These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 35159844)
21. Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method. Qi C; He Y; Yan S; Tian F; Hu Y Nanoscale Res Lett; 2013 Feb; 8(1):56. PubMed ID: 23374509 [TBL] [Abstract][Full Text] [Related]
22. Experimental study of natural convection enhancement using a Fe3O4-water based magnetic nanofluid. Stoian FD; Holotescu S J Nanosci Nanotechnol; 2012 Oct; 12(10):8211-4. PubMed ID: 23421199 [TBL] [Abstract][Full Text] [Related]
23. Numerical study of heat transfer, pressure drop and entropy production characteristics in inclined heat exchangers with uniform heat flux using mango bark/CO Uwadoka O; Adelaja AO; Olakoyejo OT; Fadipe OL; Efe S Heliyon; 2023 Aug; 9(8):e18694. PubMed ID: 37576259 [TBL] [Abstract][Full Text] [Related]
24. Thermophysical and Forced Convection Studies on (Alumina + Menthol)-Based Deep Eutectic Solvents for Their Use as a Heat Transfer Fluid. Dehury P; Singh J; Banerjee T ACS Omega; 2018 Dec; 3(12):18016-18027. PubMed ID: 31458391 [TBL] [Abstract][Full Text] [Related]
26. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications. Sekhar YR; Sharma KV; Kamal S Environ Sci Pollut Res Int; 2016 May; 23(10):9411-7. PubMed ID: 26593731 [TBL] [Abstract][Full Text] [Related]
27. Numerical Study of Flow and Heat Transfer Characteristics for Al Nam HT; Lee S; Kong M; Lee S Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138388 [TBL] [Abstract][Full Text] [Related]
28. Numerical Study on the Fluid Flow and Heat Transfer Characteristics of Al Wu H; Zhang S Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442490 [TBL] [Abstract][Full Text] [Related]
29. Experimental investigation of zinc ferrite/insulation oil nanofluid natural convection heat transfer, AC dielectric breakdown voltage, and thermophysical properties. Pourpasha H; Zeinali Heris S; Javadpour R; Mohammadpourfard M; Li Y Sci Rep; 2024 Sep; 14(1):20721. PubMed ID: 39237610 [TBL] [Abstract][Full Text] [Related]
30. Effect of L-shaped heat source and magnetic field on heat transfer and irreversibilities in nanofluid-filled oblique complex enclosure. Zhang XH; Saeed T; Algehyne EA; El-Shorbagy MA; El-Refaey AM; Ibrahim M Sci Rep; 2021 Aug; 11(1):16458. PubMed ID: 34385502 [TBL] [Abstract][Full Text] [Related]
31. Analysis of natural convection for a Casson-based multiwall carbon nanotube nanofluid in a partially heated wavy enclosure with a circular obstacle in the presence of thermal radiation. Vishnu Ganesh N; Al-Mdallal QM; Öztop HF; Kalaivanan R J Adv Res; 2022 Jul; 39():167-185. PubMed ID: 35777907 [TBL] [Abstract][Full Text] [Related]
32. Entropy Generation Analysis and Natural Convection in a Nanofluid-Filled Square Cavity with a Concentric Solid Insert and Different Temperature Distributions. Alsabery AI; Ishak MS; Chamkha AJ; Hashim I Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265426 [TBL] [Abstract][Full Text] [Related]
33. Chemical Reaction and Internal Heating Effects on the Double Diffusive Convection in Porous Membrane Enclosures Soaked with Maxwell Fluid. Yadav D; Al-Siyabi M; Awasthi MK; Al-Nadhairi S; Al-Rahbi A; Al-Subhi M; Ragoju R; Bhattacharyya K Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323813 [TBL] [Abstract][Full Text] [Related]
34. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow. Teng TP; Hung YH; Teng TC; Chen JH Nanoscale Res Lett; 2011 Aug; 6(1):488. PubMed ID: 21827644 [TBL] [Abstract][Full Text] [Related]
35. Nanoparticle Sphericity Investigation of Cu-Al You X Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893520 [TBL] [Abstract][Full Text] [Related]
36. Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block. Alsabery AI; Tayebi T; Kadhim HT; Ghalambaz M; Hashim I; Chamkha AJ J Adv Res; 2021 May; 30():63-74. PubMed ID: 34026287 [TBL] [Abstract][Full Text] [Related]
37. A laminar forced convection via transport of water-copper-aluminum hybrid nanofluid through heated deep and shallow cavity with Corcione model. Memon AA; Memon MA; Fenta A Sci Rep; 2023 Mar; 13(1):4915. PubMed ID: 36966222 [TBL] [Abstract][Full Text] [Related]
38. Forced Convective Heat Transfer of Aqueous Al₂O₃ Nanofluid Through Shell and Tube Heat Exchanger. Haque AKMM; Kim S; Kim J; Noh J; Huh S; Choi B; Chung H; Jeong H J Nanosci Nanotechnol; 2018 Mar; 18(3):1730-1740. PubMed ID: 29448652 [TBL] [Abstract][Full Text] [Related]
39. Free convection of a suspension containing nano-encapsulated phase change material in a porous cavity; local thermal non-equilibrium model. Ghalambaz M; Hashem Zadeh SM; Mehryan SAM; Haghparast A; Zargartalebi H Heliyon; 2020 May; 6(5):e03823. PubMed ID: 32395643 [TBL] [Abstract][Full Text] [Related]
40. Laminar heat transfer and friction factor characteristics of carbon nano tube/water nanofluids. Rathnakumar P; Mayilsamy K; Suresh S; Murugesan P J Nanosci Nanotechnol; 2014 Mar; 14(3):2400-7. PubMed ID: 24745238 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]