These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35159889)

  • 21. Laser digital patterning of conductive electrodes using metal oxide nanomaterials.
    Nam VB; Giang TT; Koo S; Rho J; Lee D
    Nano Converg; 2020 Jul; 7(1):23. PubMed ID: 32632474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes.
    Fernandes IJ; Aroche AF; Schuck A; Lamberty P; Peter CR; Hasenkamp W; Rocha TLAC
    Sci Rep; 2020 Jun; 10(1):8878. PubMed ID: 32483302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors.
    Lee D; Paeng D; Park HK; Grigoropoulos CP
    ACS Nano; 2014 Oct; 8(10):9807-14. PubMed ID: 25130917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reactive Conductive Ink Capable of In Situ and Rapid Synthesis of Conductive Patterns Suitable for Inkjet Printing.
    Wang Y; Du D; Zhou Z; Xie H; Li J; Zhao Y
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31574997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink.
    Hong S; Yeo J; Kim G; Kim D; Lee H; Kwon J; Lee H; Lee P; Ko SH
    ACS Nano; 2013 Jun; 7(6):5024-31. PubMed ID: 23731244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics.
    Liu S; Yuen MC; White EL; Boley JW; Deng B; Cheng GJ; Kramer-Bottiglio R
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28232-28241. PubMed ID: 30045618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-temperature sintering of silver patterns on polyimide substrate printed with particle-free ink.
    Wang N; Liu Y; Guo W; Jin C; Mei L; Peng P
    Nanotechnology; 2020 Jul; 31(30):305301. PubMed ID: 32241006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sintering Inhibition of Silver Nanoparticle Films via AgCl Nanocrystal Formation.
    Öhlund T; Hummelgård M; Olin H
    Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28817099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous Nanoparticle Assembly by a Modulated Photo-Induced Microbubble for Fabrication of Micrometric Conductive Patterns.
    Armon N; Greenberg E; Layani M; Rosen YS; Magdassi S; Shpaisman H
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44214-44221. PubMed ID: 29172418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat Scanning for the Fabrication of Conductive Fibers.
    Jang J; Zhou H; Lee J; Kim H; In JB
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33926139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics.
    Tai YL; Yang ZG
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17104-11. PubMed ID: 26133543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Substrates on Femtosecond Laser Pulse-Induced Reductive Sintering of Cobalt Oxide Nanoparticles.
    Mizoshiri M; Yoshidomi K; Darkhanbaatar N; Khairullina EM; Tumkin II
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step inkjet printing of conductive silver tracks on polymer substrates.
    Perelaer J; Hendriks CE; de Laat AWM; Schubert US
    Nanotechnology; 2009 Apr; 20(16):165303. PubMed ID: 19420568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cu Patterning Using Femtosecond Laser Reductive Sintering of CuO Nanoparticles under Inert Gas Injection.
    Mizoshiri M; Yoshidomi K
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silver Ink Formulations for Sinter-free Printing of Conductive Films.
    Black K; Singh J; Mehta D; Sung S; Sutcliffe CJ; Chalker PR
    Sci Rep; 2016 Feb; 6():20814. PubMed ID: 26857286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device.
    An K; Hong S; Han S; Lee H; Yeo J; Ko SH
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2786-90. PubMed ID: 24471931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.