These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 35160065)
1. Evaluating a Deep Learning Diabetic Retinopathy Grading System Developed on Mydriatic Retinal Images When Applied to Non-Mydriatic Community Screening. Nunez do Rio JM; Nderitu P; Bergeles C; Sivaprasad S; Tan GSW; Raman R J Clin Med; 2022 Jan; 11(3):. PubMed ID: 35160065 [TBL] [Abstract][Full Text] [Related]
2. Deep learning for gradability classification of handheld, non-mydriatic retinal images. Nderitu P; do Rio JMN; Rasheed R; Raman R; Rajalakshmi R; Bergeles C; Sivaprasad S; Sci Rep; 2021 May; 11(1):9469. PubMed ID: 33947946 [TBL] [Abstract][Full Text] [Related]
3. Using deep learning to detect diabetic retinopathy on handheld non-mydriatic retinal images acquired by field workers in community settings. Nunez do Rio JM; Nderitu P; Raman R; Rajalakshmi R; Kim R; Rani PK; Sivaprasad S; Bergeles C; Sci Rep; 2023 Jan; 13(1):1392. PubMed ID: 36697482 [TBL] [Abstract][Full Text] [Related]
4. Diagnostic test accuracy of diabetic retinopathy screening by physician graders using a hand-held non-mydriatic retinal camera at a tertiary level medical clinic. Piyasena MMPN; Yip JLY; MacLeod D; Kim M; Gudlavalleti VSM BMC Ophthalmol; 2019 Apr; 19(1):89. PubMed ID: 30961576 [TBL] [Abstract][Full Text] [Related]
5. Comparison of 2-Field and 5-Field Mydriatic Handheld Retinal Imaging in a Community-Based Diabetic Retinopathy Screening Program. Aquino LAC; Salongcay RP; Alog GP; Locaylocay KB; Saunar AV; Peto T; Silva PS Ophthalmologica; 2023; 246(3-4):203-208. PubMed ID: 37231995 [TBL] [Abstract][Full Text] [Related]
6. Head to head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence. Doğan ME; Bilgin AB; Sari R; Bulut M; Akar Y; Aydemir M Eye (Lond); 2024 Jun; 38(9):1694-1701. PubMed ID: 38467864 [TBL] [Abstract][Full Text] [Related]
7. Performance of Automated Machine Learning for Diabetic Retinopathy Image Classification from Multi-field Handheld Retinal Images. Jacoba CMP; Doan D; Salongcay RP; Aquino LAC; Silva JPY; Salva CMG; Zhang D; Alog GP; Zhang K; Locaylocay KLRB; Saunar AV; Ashraf M; Sun JK; Peto T; Aiello LP; Silva PS Ophthalmol Retina; 2023 Aug; 7(8):703-712. PubMed ID: 36924893 [TBL] [Abstract][Full Text] [Related]
8. Accuracy of Integrated Artificial Intelligence Grading Using Handheld Retinal Imaging in a Community Diabetic Eye Screening Program. Salongcay RP; Aquino LAC; Alog GP; Locaylocay KB; Saunar AV; Peto T; Silva PS Ophthalmol Sci; 2024; 4(3):100457. PubMed ID: 38317871 [TBL] [Abstract][Full Text] [Related]
9. A new handheld fundus camera combined with visual artificial intelligence facilitates diabetic retinopathy screening. Ruan S; Liu Y; Hu WT; Jia HX; Wang SS; Song ML; Shen MX; Luo DW; Ye T; Wang FH Int J Ophthalmol; 2022; 15(4):620-627. PubMed ID: 35450182 [TBL] [Abstract][Full Text] [Related]
10. Automated multidimensional deep learning platform for referable diabetic retinopathy detection: a multicentre, retrospective study. Zhang G; Lin JW; Wang J; Ji J; Cen LP; Chen W; Xie P; Zheng Y; Xiong Y; Wu H; Li D; Ng TK; Pang CP; Zhang M BMJ Open; 2022 Jul; 12(7):e060155. PubMed ID: 35902186 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity and specificity of automated analysis of single-field non-mydriatic fundus photographs by Bosch DR Algorithm-Comparison with mydriatic fundus photography (ETDRS) for screening in undiagnosed diabetic retinopathy. Bawankar P; Shanbhag N; K SS; Dhawan B; Palsule A; Kumar D; Chandel S; Sood S PLoS One; 2017; 12(12):e0189854. PubMed ID: 29281690 [TBL] [Abstract][Full Text] [Related]
12. Diagnostic Accuracy of Community-Based Diabetic Retinopathy Screening With an Offline Artificial Intelligence System on a Smartphone. Natarajan S; Jain A; Krishnan R; Rogye A; Sivaprasad S JAMA Ophthalmol; 2019 Oct; 137(10):1182-1188. PubMed ID: 31393538 [TBL] [Abstract][Full Text] [Related]
13. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239 [TBL] [Abstract][Full Text] [Related]
14. Diabetic Retinopathy Screening Using Artificial Intelligence and Handheld Smartphone-Based Retinal Camera. Malerbi FK; Andrade RE; Morales PH; Stuchi JA; Lencione D; de Paulo JV; Carvalho MP; Nunes FS; Rocha RM; Ferraz DA; Belfort R J Diabetes Sci Technol; 2022 May; 16(3):716-723. PubMed ID: 33435711 [TBL] [Abstract][Full Text] [Related]
15. Validation of handheld fundus camera with mydriasis for retinal imaging of diabetic retinopathy screening in China: a prospective comparison study. Xiao B; Liao Q; Li Y; Weng F; Jin L; Wang Y; Huang W; Yi J; Burton MJ; Yip JL BMJ Open; 2020 Oct; 10(10):e040196. PubMed ID: 33122324 [TBL] [Abstract][Full Text] [Related]