These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35160362)

  • 1. Reactive Magnetron Plasma Modification of Electrospun PLLA Scaffolds with Incorporated Chloramphenicol for Controlled Drug Release.
    Volokhova AA; Fedorishin DA; Khvastunova AO; Spiridonova TI; Kozelskaya AI; Kzhyshkowska J; Tverdokhlebov SI; Kurzina I
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun Poly-L-Lactic Acid Scaffolds Surface-Modified via Reactive Magnetron Sputtering Using Different Mixing Ratios of Nitrogen and Xenon.
    Maryin PV; Tran TH; Frolova AA; Buldakov MA; Choinzonov EL; Kozelskaya AI; Rutkowski S; Tverdokhlebov SI
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of electrospun poly-(l-lactic) acid scaffolds by reactive magnetron sputtering.
    Bolbasov EN; Maryin PV; Stankevich KS; Kozelskaya AI; Shesterikov EV; Khodyrevskaya YI; Nasonova MV; Shishkova DK; Kudryavtseva YA; Anissimov YG; Tverdokhlebov SI
    Colloids Surf B Biointerfaces; 2018 Feb; 162():43-51. PubMed ID: 29149727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Modification of Electrospun Bioresorbable and Biostable Scaffolds by Pulsed DC Magnetron Sputtering of Titanium for Gingival Tissue Regeneration.
    Badaraev AD; Sidelev DV; Kozelskaya AI; Bolbasov EN; Tran TH; Nashchekin AV; Malashicheva AB; Rutkowski S; Tverdokhlebov SI
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro study on electrospun lecithin-based poly (L-lactic acid) scaffolds and their biocompatibility.
    Xu Z; Liu P; Li H; Zhang M; Wu Q
    J Biomater Sci Polym Ed; 2020 Dec; 31(17):2285-2298. PubMed ID: 32723020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial Activity and Cytocompatibility of Electrospun PLGA Scaffolds Surface-Modified by Pulsed DC Magnetron Co-Sputtering of Copper and Titanium.
    Badaraev AD; Lerner MI; Bakina OV; Sidelev DV; Tran TH; Krinitcyn MG; Malashicheva AB; Cherempey EG; Slepchenko GB; Kozelskaya AI; Rutkowski S; Tverdokhlebov SI
    Pharmaceutics; 2023 Mar; 15(3):. PubMed ID: 36986800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of PCL Scaffolds by Reactive Magnetron Sputtering: A Possibility for Modulating Macrophage Responses.
    Stankevich KS; Kudryavtseva VL; Bolbasov EN; Shesterikov EV; Larionova IV; Shapovalova YG; Domracheva LV; Volokhova AA; Kurzina IA; Zhukov YM; Malashicheva AB; Kzhyshkowska JG; Tverdokhlebov SI
    ACS Biomater Sci Eng; 2020 Jul; 6(7):3967-3974. PubMed ID: 33463309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold.
    Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery.
    Birhanu G; Tanha S; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Kiani Dehkordi B
    Pharm Dev Technol; 2019 Mar; 24(3):338-347. PubMed ID: 29799305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape Memory and Osteogenesis Capabilities of the Electrospun Poly(3-Hydroxybutyrate-
    Wang X; Yan H; Shen Y; Tang H; Yi B; Qin C; Zhang Y
    Tissue Eng Part A; 2021 Jan; 27(1-2):142-152. PubMed ID: 32524903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel antibacterial nanofibrous PLLA scaffolds.
    Feng K; Sun H; Bradley MA; Dupler EJ; Giannobile WV; Ma PX
    J Control Release; 2010 Sep; 146(3):363-9. PubMed ID: 20570700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun poly-l-lactide scaffold for the controlled and targeted delivery of a synthetically obtained Diclofenac prodrug to treat actinic keratosis.
    Piccirillo G; Bochicchio B; Pepe A; Schenke-Layland K; Hinderer S
    Acta Biomater; 2017 Apr; 52():187-196. PubMed ID: 27816622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aligned porous electrospun fibrous membrane with controlled drug delivery - An efficient strategy to accelerate diabetic wound healing with improved angiogenesis.
    Ren X; Han Y; Wang J; Jiang Y; Yi Z; Xu H; Ke Q
    Acta Biomater; 2018 Apr; 70():140-153. PubMed ID: 29454159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications.
    Wang HB; Mullins ME; Cregg JM; Hurtado A; Oudega M; Trombley MT; Gilbert RJ
    J Neural Eng; 2009 Feb; 6(1):016001. PubMed ID: 19104139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug loading and release from electrospun biodegradable nanofibers.
    Goonoo N; Bhaw-Luximon A; Jhurry D
    J Biomed Nanotechnol; 2014 Sep; 10(9):2173-99. PubMed ID: 25992453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Randomly Electrospun Poly(lactic-co-glycolic acid):Poly(ethylene oxide) (PLGA:PEO) Fibrous Scaffolds Enhancing Myoblast Differentiation and Alignment.
    Evrova O; Hosseini V; Milleret V; Palazzolo G; Zenobi-Wong M; Sulser T; Buschmann J; Eberli D
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31574-31586. PubMed ID: 27726370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds.
    Sangsanoh P; Waleetorncheepsawat S; Suwantong O; Wutticharoenmongkol P; Weeranantanapan O; Chuenjitbuntaworn B; Cheepsunthorn P; Pavasant P; Supaphol P
    Biomacromolecules; 2007 May; 8(5):1587-94. PubMed ID: 17429941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.