BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35160368)

  • 1. Formation and Investigation of Mechanical, Thermal, Optical and Wetting Properties of Melt-Spun Multifilament Poly(lactic acid) Yarns with Added Rosins.
    Bolskis E; Adomavičiūtė E; Griškonis E
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Myrrh Extracts on the Properties of PLA Films and Melt-Spun Multifilament Yarns.
    Bolskis E; Adomavičiūtė E; Griškonis E; Norvydas V
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stretchable and Flexible Melt Spun Thermoplastic Conductive Yarns for Smart Textiles.
    Islam GMN; Collie S; Qasim M; Ali MA
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weathering of Antibacterial Melt-Spun Polyfilaments Modified by Pine Rosin.
    Kanerva M; Mensah-Attipoe J; Puolakka A; Takala TM; Hyttinen M; Layek R; Palola S; Yudin V; Pasanen P; Saris P
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33562272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process-Property Relationships for Melt-Spun Poly(lactic acid) Yarn.
    Gajjar CR; Stallrich JW; Pasquinelli MA; King MW
    ACS Omega; 2021 Jun; 6(24):15920-15928. PubMed ID: 34179636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-spun PLA-PEG-yarns for tissue engineering applications.
    Kruse M; Greuel M; Kreimendahl F; Schneiders T; Bauer B; Gries T; Jockenhoevel S
    Biomed Tech (Berl); 2018 Jun; 63(3):231-243. PubMed ID: 29708874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(Ethylene Furanoate) along Its Life-Cycle from a Polycondensation Approach to High-Performance Yarn and Its Recyclate.
    Höhnemann T; Steinmann M; Schindler S; Hoss M; König S; Ota A; Dauner M; Buchmeiser MR
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Colorants and Process Parameters on the Properties of Dope-Dyed Polylactic Acid Multifilament Yarns.
    Balakrishnan NK; Siebert S; Richter C; Groten R; Seide G
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen multifilament spinning.
    Tonndorf R; Aibibu D; Cherif C
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110105. PubMed ID: 31753356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable fibres spun from poly(lactide) generated by reactive extrusion.
    Schmack G; Jehnichen D; Vogel R; Tändler B; Beyreuther R; Jacobsen S; Fritz HG
    J Biotechnol; 2001 Mar; 86(2):151-60. PubMed ID: 11245903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and characterisation of novel phosphate glass fibre yarns, textiles, and textile composites for biomedical applications.
    Wang Y; Liu X; Zhu C; Parsons A; Liu J; Huang S; Ahmed I; Rudd C; Sharmin N
    J Mech Behav Biomed Mater; 2019 Nov; 99():47-55. PubMed ID: 31344522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleating Agents to Enhance Poly(l-Lactide) Fiber Crystallization during Industrial-Scale Melt Spinning.
    Siebert S; Berghaus J; Seide G
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of Stereocomplex PLA for Melt Spinning.
    Marx B; Bostan L; Herrmann AS; Boskamp L; Koschek K
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous, Water-Resistant Multifilament Yarn Spun from Gelatin.
    Stoessel PR; Krebs U; Hufenus R; Halbeisen M; Zeltner M; Grass RN; Stark WJ
    Biomacromolecules; 2015 Jul; 16(7):1997-2005. PubMed ID: 26035474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(l-lactide) and Poly(l-lactide- co-trimethylene carbonate) Melt-Spun Fibers: Structure-Processing-Properties Relationship.
    Fuoco T; Mathisen T; Finne-Wistrand A
    Biomacromolecules; 2019 Mar; 20(3):1346-1361. PubMed ID: 30665299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the Influence of PCL on the In Vitro Degradation of Extruded PLA Monofilaments and Melt-Spun Filaments.
    Barral V; Dropsit S; Cayla A; Campagne C; Devaux É
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33418932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Study on Highly Effective Electromagnetic Wave Shield Textile Shell Fabrics Made of Point Polyester/Metallic Core-Spun Yarns.
    Huang CH; Hsu PW; Ke ZW; Lin JH; Shiu BC; Lou CW; Lin JH
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Efficiency of Biobased Carbonization Agent and Intumescent Flame Retardant on Flame Retardancy of Biopolymer Composites and Investigation of their Melt-Spinnability.
    Maqsood M; Langensiepen F; Seide G
    Molecules; 2019 Apr; 24(8):. PubMed ID: 30999658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals.
    Jalali A; Romero-Diez S; Nofar M; Park CB
    Int J Biol Macromol; 2021 Dec; 193(Pt B):2210-2220. PubMed ID: 34798187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Bicomponent Functional Fibers with Sheath/Core Configuration Containing Intumescent Flame-Retardants for Textile Applications.
    Maqsood M; Seide G
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31547511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.