These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35160465)

  • 1. Pure Chitosan-Based Fibers Manufactured by a Wet Spinning Lab-Scale Process Using Ionic Liquids.
    Kuznik I; Kruppke I; Cherif C
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Solvent and Coagulating Agent for Development of Chitosan Fibers by Wet Spinning.
    Mohammadkhani G; Kumar Ramamoorthy S; Adolfsson KH; Mahboubi A; Hakkarainen M; Zamani A
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34203312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifilament cellulose/chitin blend yarn spun from ionic liquids.
    Mundsinger K; Müller A; Beyer R; Hermanutz F; Buchmeiser MR
    Carbohydr Polym; 2015 Oct; 131():34-40. PubMed ID: 26256157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen multifilament spinning.
    Tonndorf R; Aibibu D; Cherif C
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110105. PubMed ID: 31753356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force-Induced Alignment of Nanofibrillated Bacterial Cellulose for the Enhancement of Cellulose Composite Macrofibers.
    Wang R; Fujie T; Itaya H; Wada N; Takahashi K
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High tenacity regenerated chitosan fibers prepared by using the binary ionic liquid solvent (Gly·HCl)-[Bmim]Cl.
    Ma B; Qin A; Li X; He C
    Carbohydr Polym; 2013 Sep; 97(2):300-5. PubMed ID: 23911449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning.
    Marquez-Bravo S; Doench I; Molina P; Bentley FE; Tamo AK; Passieux R; Lossada F; David L; Osorio-Madrazo A
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34068136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wet-spinning of magneto-responsive helical chitosan microfibers.
    Brüggemann D; Michel J; Suter N; Grande de Aguiar M; Maas M
    Beilstein J Nanotechnol; 2020; 11():991-999. PubMed ID: 32704461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual roles of sodium polyacrylate in alginate fiber wet-spinning: Modify the solution rheology and strengthen the fiber.
    Li S; Chandra Biswas M; Ford E
    Carbohydr Polym; 2022 Dec; 297():120001. PubMed ID: 36184133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Pilot-Scale Wet-Spinning of Biocompatible Chitin/Chitosan Multifilaments from an Aqueous KOH/Urea Solution.
    Huang J; Zhong Y; Zhang X; Xu H; Zhu C; Cai J
    Macromol Rapid Commun; 2021 Aug; 42(16):e2100252. PubMed ID: 34142401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan/polyethylene glycol blend fibers and their properties for drug controlled release.
    Wang Q; Zhang N; Hu X; Yang J; Du Y
    J Biomed Mater Res A; 2008 Jun; 85(4):881-7. PubMed ID: 17907240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan/starch fibers and their properties for drug controlled release.
    Wang Q; Zhang N; Hu X; Yang J; Du Y
    Eur J Pharm Biopharm; 2007 Jun; 66(3):398-404. PubMed ID: 17196808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytocompatibility / Antibacterial Activity Trade-off for Knittable Wet-Spun Chitosan Monofilaments Functionalized by the In Situ Incorporation of Cu
    Passieux R; Sudre G; Montembault A; Renard M; Hagege A; Alcouffe P; Haddane A; Vandesteene M; Boucard N; Bordenave L; David L
    ACS Biomater Sci Eng; 2022 Apr; 8(4):1735-1748. PubMed ID: 35226455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-woven fabrics of fine regenerated cellulose fibers prepared from ionic-liquid solution via wet type solution blow spinning.
    Zhang J; Kitayama H; Gotoh Y; Potthast A; Rosenau T
    Carbohydr Polym; 2019 Dec; 226():115258. PubMed ID: 31582091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical reinforcement of continuous flow spun polyelectrolyte complex fibers.
    Granero AJ; Razal JM; Wallace GG; in het Panhuis M
    Macromol Biosci; 2009 Apr; 9(4):354-60. PubMed ID: 19003850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of coagulating conditions on the crystallinity, orientation and mechanical properties of regenerated cellulose fibers.
    Wang B; Nie Y; Kang Z; Liu X
    Int J Biol Macromol; 2023 Jan; 225():1374-1383. PubMed ID: 36435466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Dry Spinning Process of Natural Macromolecules for Sustainable Fiber Material -1- Proof of the Concept Using Silk Fibroin.
    Satoh R; Morinaga T; Sato T
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds.
    Al Aiti M; Das A; Kanerva M; Järventausta M; Johansson P; Scheffler C; Göbel M; Jehnichen D; Brünig H; Wulff L; Boye S; Arnhold K; Kuusipalo J; Heinrich G
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose regeneration and spinnability from ionic liquids.
    Hauru LK; Hummel M; Nieminen K; Michud A; Sixta H
    Soft Matter; 2016 Feb; 12(5):1487-95. PubMed ID: 26660047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid in situ quantification of rheo-optic evolution for cellulose spinning in ionic solvents.
    Du J; Páez J; Otero P; Sánchez PB
    Carbohydr Polym; 2023 Nov; 320():121229. PubMed ID: 37659795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.