These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35160520)

  • 1. Biodegradability of Polyolefin-Based Compositions: Effect of Natural Rubber.
    Varyan I; Kolesnikova N; Xu H; Tyubaeva P; Popov A
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable Polymer Materials Based on Polyethylene and Natural Rubber: Acquiring, Investigation, Properties.
    Varyan I; Tyubaeva P; Kolesnikova N; Popov A
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers - A review.
    Hejna A; Korol J; Przybysz-Romatowska M; Zedler Ł; Chmielnicki B; Formela K
    Waste Manag; 2020 May; 108():106-118. PubMed ID: 32344299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waste Rubber Recycling: A Review on the Evolution and Properties of Thermoplastic Elastomers.
    Fazli A; Rodrigue D
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and opportunities of biodegradable plastics: A mini review.
    Rujnić-Sokele M; Pilipović A
    Waste Manag Res; 2017 Feb; 35(2):132-140. PubMed ID: 28064843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological degradation of plastics: a comprehensive review.
    Shah AA; Hasan F; Hameed A; Ahmed S
    Biotechnol Adv; 2008; 26(3):246-65. PubMed ID: 18337047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From "farm to fork" strawberry system: current realities and potential innovative scenarios from life cycle assessment of non-renewable energy use and green house gas emissions.
    Girgenti V; Peano C; Baudino C; Tecco N
    Sci Total Environ; 2014 Mar; 473-474():48-53. PubMed ID: 24361447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The second green revolution? Production of plant-based biodegradable plastics.
    Mooney BP
    Biochem J; 2009 Mar; 418(2):219-32. PubMed ID: 19196243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products.
    García-Depraect O; Bordel S; Lebrero R; Santos-Beneit F; Börner RA; Börner T; Muñoz R
    Biotechnol Adv; 2021 Dec; 53():107772. PubMed ID: 34015389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Approach in Biodegradation of Synthetic Thermoplastic Polymers: An Overview.
    Venkatesan R; Santhamoorthy M; Alagumalai K; Haldhar R; Raorane CJ; Raj V; Kim SC
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of polymers in managing plastic waste - A review.
    Lim BKH; Thian ES
    Sci Total Environ; 2022 Mar; 813():151880. PubMed ID: 34826495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are biodegradable plastics a promising solution to solve the global plastic pollution?
    Shen M; Song B; Zeng G; Zhang Y; Huang W; Wen X; Tang W
    Environ Pollut; 2020 Aug; 263(Pt A):114469. PubMed ID: 32272422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Natural Rubber in Polyethylene Composites on Morphology, Mechanical Properties and Biodegradability.
    Mastalygina E; Varyan I; Kolesnikova N; Gonzalez MIC; Popov A
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32069803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable and compostable alternatives to conventional plastics.
    Song JH; Murphy RJ; Narayan R; Davies GB
    Philos Trans R Soc Lond B Biol Sci; 2009 Jul; 364(1526):2127-39. PubMed ID: 19528060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges?
    Delangiz N; Aliyar S; Pashapoor N; Nobaharan K; Asgari Lajayer B; Rodríguez-Couto S
    Chemosphere; 2022 May; 294():133709. PubMed ID: 35074325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal bioremediation of polyethylene: Challenges and perspectives.
    Cowan AR; Costanzo CM; Benham R; Loveridge EJ; Moody SC
    J Appl Microbiol; 2022 Jan; 132(1):78-89. PubMed ID: 34218487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the sustainable design and applications of biodegradable polymers.
    Rai P; Mehrotra S; Priya S; Gnansounou E; Sharma SK
    Bioresour Technol; 2021 Apr; 325():124739. PubMed ID: 33509643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyester biodegradability: importance and potential for optimisation.
    Wang Y; van Putten RJ; Tietema A; Parsons JR; Gruter GM
    Green Chem; 2024 Apr; 26(7):3698-3716. PubMed ID: 38571729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastic biodegradation: Frontline microbes and their enzymes.
    Amobonye A; Bhagwat P; Singh S; Pillai S
    Sci Total Environ; 2021 Mar; 759():143536. PubMed ID: 33190901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Enzymatic Degradation of Biodegradable Plastics.
    Roohi ; Bano K; Kuddus M; Zaheer MR; Zia Q; Khan MF; Ashraf GM; Gupta A; Aliev G
    Curr Pharm Biotechnol; 2017; 18(5):429-440. PubMed ID: 28545359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.