These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 35160616)
1. Revealing the Effect of MnO Mohammed Ali HSH; Sumiya ; Anwar Y; Al-Ghamdi YO; Fakieh M; Khan SA Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160616 [TBL] [Abstract][Full Text] [Related]
2. Antibacterial Films of Alginate-CoNi-Coated Cellulose Paper Stabilized Co NPs for Dyes and Nitrophenol Degradation. Anwar Y; Mohammed Ali HSH; Rehman WU; Hemeg HA; Khan SA Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883624 [TBL] [Abstract][Full Text] [Related]
3. Antibacterial composite films of oxidized alginate-chitosan-ZnO anchored Cu nanoparticles for the degradation of organic pollutants. Islam M; Javed A; Rahman ZU; Al-Ghamdi YO; Khan SA Int J Biol Macromol; 2024 Oct; 278(Pt 2):134764. PubMed ID: 39153670 [TBL] [Abstract][Full Text] [Related]
4. Manganese dioxide nanoparticles/activated carbon composite as efficient UV and visible-light photocatalyst. Khan I; Sadiq M; Khan I; Saeed K Environ Sci Pollut Res Int; 2019 Feb; 26(5):5140-5154. PubMed ID: 30607840 [TBL] [Abstract][Full Text] [Related]
5. A template of cellulose acetate polymer-ZnAl/C layered double hydroxide composite fabricated with Ni NPs: Applications in the hydrogenation of nitrophenols and dyes degradation. Khan SA; Bakhsh EM; Akhtar K; Khan SB Spectrochim Acta A Mol Biomol Spectrosc; 2020 Nov; 241():118671. PubMed ID: 32650247 [TBL] [Abstract][Full Text] [Related]
6. Stabilization of Various Zero-Valent Metal Nanoparticles on a Superabsorbent Polymer for the Removal of Dyes, Nitrophenol, and Pathogenic Bacteria. Ali HSHM; Khan SA ACS Omega; 2020 Apr; 5(13):7379-7391. PubMed ID: 32280879 [TBL] [Abstract][Full Text] [Related]
7. A bioresource catalyst system of alginate-starch-activated carbon microsphere templated Cu nanoparticles: Potentials in nitroarenes hydrogenation and dyes discoloration. Ullah K; Khan S; Khan M; Rahman ZU; Al-Ghamdi YO; Mahmood A; Hussain S; Khan SB; Khan SA Int J Biol Macromol; 2022 Dec; 222(Pt A):887-901. PubMed ID: 36179868 [TBL] [Abstract][Full Text] [Related]
8. Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles. Ali F; Khan SB; Kamal T; Anwar Y; Alamry KA; Asiri AM Chemosphere; 2017 Dec; 188():588-598. PubMed ID: 28917211 [TBL] [Abstract][Full Text] [Related]
9. Study of adsorption of anionic dyes over biofabricated crystalline α-MnO Srivastava V; Choubey AK Environ Sci Pollut Res Int; 2021 Mar; 28(12):15504-15518. PubMed ID: 33241501 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of photocatalytic and biological activities of chitosan/activated carbon incorporated with TiO Owda ME; Elfeky AS; Abouzeid RE; Saleh AK; Awad MA; Abdellatif HA; Ahmed FM; Elzaref AS Environ Sci Pollut Res Int; 2022 Mar; 29(12):18189-18201. PubMed ID: 34687415 [TBL] [Abstract][Full Text] [Related]
11. Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Sathiyavimal S; Vasantharaj S; Kaliannan T; Pugazhendhi A Carbohydr Polym; 2020 Aug; 241():116243. PubMed ID: 32507166 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. Preethi S; Abarna K; Nithyasri M; Kishore P; Deepika K; Ranjithkumar R; Bhuvaneshwari V; Bharathi D Int J Biol Macromol; 2020 Dec; 164():2779-2787. PubMed ID: 32777425 [TBL] [Abstract][Full Text] [Related]
14. Highly efficient multifunctional graphene/chitosan/magnetite nanocomposites for photocatalytic degradation of important dye molecules. Maruthupandy M; Muneeswaran T; Anand M; Quero F Int J Biol Macromol; 2020 Jun; 153():736-746. PubMed ID: 32169444 [TBL] [Abstract][Full Text] [Related]
15. Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. Mallakpour S; Okhovat M Int J Biol Macromol; 2021 Apr; 175():330-340. PubMed ID: 33556403 [TBL] [Abstract][Full Text] [Related]
16. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Li Y; Li X; Li J; Yin J Water Res; 2006 Mar; 40(6):1119-26. PubMed ID: 16503343 [TBL] [Abstract][Full Text] [Related]
17. [Activated Carbon Supported Co Wang ZM; Chen JB; Zhang LM; Li WW; Huang TY Huan Jing Ke Xue; 2016 Jul; 37(7):2591-2600. PubMed ID: 29964467 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. Radini IA; Hasan N; Malik MA; Khan Z J Photochem Photobiol B; 2018 Jun; 183():154-163. PubMed ID: 29705508 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of zero-valent Au nanoparticles on chitosan coated NiAl layered double hydroxide microspheres for the discoloration of dyes in aqueous medium. Ali Khan S; Bakhsh EM; Asiri AM; Bahadar Khan S Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119370. PubMed ID: 33412468 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and antibacterial activities of novel nanocomposite films of chitosan/phosphoramide/Fe3O4 NPs. Shariatinia Z; Nikfar Z Int J Biol Macromol; 2013 Sep; 60():226-34. PubMed ID: 23748004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]