These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35160629)

  • 21. Inkjet Pattern-Guided Liquid Templates on Superhydrophobic Substrates for Rapid Prototyping of Microfluidic Devices.
    Lai X; Pu Z; Yu H; Li D
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1817-1824. PubMed ID: 31804059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid and alternative fabrication method for microfluidic paper based analytical devices.
    Malekghasemi S; Kahveci E; Duman M
    Talanta; 2016 Oct; 159():401-411. PubMed ID: 27474324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of paper-based analytical devices using stencil-printed glass varnish barriers for colorimetric detection of salivary α-amylase.
    Silva-Neto HA; Jaime JC; Rocha DS; Sgobbi LF; Coltro WKT
    Anal Chim Acta; 2024 Apr; 1297():342336. PubMed ID: 38438226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer.
    Bao N; Zhang Q; Xu JJ; Chen HY
    J Chromatogr A; 2005 Sep; 1089(1-2):270-5. PubMed ID: 16130797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microembossing: A Convenient Process for Fabricating Microchannels on Nanocellulose Paper-Based Microfluidics.
    Yuan W; Yuan H; Duan S; Yong R; Zhu J; Lim EG; Mitrovic I; Song P
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37870309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper.
    Bruzewicz DA; Reches M; Whitesides GM
    Anal Chem; 2008 May; 80(9):3387-92. PubMed ID: 18333627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review on wax printed microfluidic paper-based devices for international health.
    Altundemir S; Uguz AK; Ulgen K
    Biomicrofluidics; 2017 Jul; 11(4):041501. PubMed ID: 28936274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of paper-based microfluidic devices using a 3D printer and a commercially-available wax filament.
    Espinosa A; Diaz J; Vazquez E; Acosta L; Santiago A; Cunci L
    Talanta Open; 2022 Dec; 6():. PubMed ID: 36093430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
    Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Resolution Microfluidic Paper-Based Analytical Devices for Sub-Microliter Sample Analysis.
    Tenda K; Ota R; Yamada K; Henares TG; Suzuki K; Citterio D
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine.
    Zhang H; Smith E; Zhang W; Zhou A
    Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic toner-based analytical devices: disposable, lightweight, and portable platforms for point-of-care diagnostics with colorimetric detection.
    Oliveira KA; de Souza FR; de Oliveira CR; da Silveira LA; Coltro WK
    Methods Mol Biol; 2015; 1256():85-98. PubMed ID: 25626533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of Polymer Microfluidics: An Overview.
    Juang YJ; Chiu YJ
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid Assembly of Cellulose Microfibers into Translucent and Flexible Microfluidic Paper-Based Analytical Devices via Wettability Patterning.
    Ma P; Wang S; Wang J; Wang Y; Dong Y; Li S; Su H; Chen P; Feng X; Li Y; Du W; Liu BF
    Anal Chem; 2022 Oct; 94(39):13332-13341. PubMed ID: 36121740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process.
    Kumawat N; Soman SS; Vijayavenkataraman S; Kumar S
    Lab Chip; 2022 Sep; 22(18):3377-3389. PubMed ID: 35801817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inkjet Printing Enabled Controllable Paper Superhydrophobization and Its Applications.
    Zhang Y; Ren T; He J
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11343-11349. PubMed ID: 29578685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defining microchannels and valves on a hydrophobic paper by low-cost inkjet printing of aqueous or weak organic solutions.
    Cai L; Zhong M; Li H; Xu C; Yuan B
    Biomicrofluidics; 2015 Jul; 9(4):046503. PubMed ID: 26339326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting Dimensions in Microfluidic Paper Based Analytical Devices.
    Catalan-Carrio R; Akyazi T; Basabe-Desmonts L; Benito-Lopez F
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs).
    Strong EB; Schultz SA; Martinez AW; Martinez NW
    Sci Rep; 2019 Jan; 9(1):7. PubMed ID: 30626903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.