BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 35160634)

  • 1. Stereocomplexation Reinforced High Strength Poly(L-lactide)/Nanohydroxyapatite Composites for Potential Bone Repair Applications.
    Guo N; Zhao M; Li S; Hao J; Wu Z; Zhang C
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(L-lactide) nanocomposites containing poly(D-lactide) grafted nanohydroxyapatite with improved interfacial adhesion via stereocomplexation.
    Huang G; Du Z; Yuan Z; Gu L; Cai Q; Yang X
    J Mech Behav Biomed Mater; 2018 Feb; 78():10-19. PubMed ID: 29128694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites.
    Arias V; Odelius K; Höglund A; Albertsson AC
    ACS Sustain Chem Eng; 2015 Sep; 3(9):2220-2231. PubMed ID: 26523245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of In-Mold Annealing on the Properties of Asymmetric Poly(l-lactide)/Poly(d-lactide) Blends Incorporated with Nanohydroxyapatite.
    Boruvka M; Cermak C; Behalek L; Brdlik P
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Study of Crystallization, Mechanical Properties, and In Vitro Cytotoxicity of Nanocomposites at Low Filler Loadings of Hydroxyapatite for Bone-Tissue Engineering Based on Poly(l-lactic acid)/Cyclo Olefin Copolymer.
    Nazir F; Iqbal M
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Stereocomplex Polylactide Particles on the Stereocomplexation of High Molecular Weight Polylactide Blends.
    Samsuri M; Iswaldi I; Purnama P
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Properties and Bioactivity of Poly(Lactic Acid) Composites Containing Poly(Glycolic Acid) Fiber and Hydroxyapatite Particles.
    Ko HS; Lee S; Lee D; Jho JY
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33477735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Morphology, Mechanical, and Thermal Properties of Calcium Carbonate-Reinforced Poly(L-lactide)-
    Srihanam P; Thongsomboon W; Baimark Y
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility.
    Diao H; Si Y; Zhu A; Ji L; Shi H
    Mater Sci Eng C Mater Biol Appl; 2012 Oct; 32(7):1796-1801. PubMed ID: 34062658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties Enhancement of High Molecular Weight Polylactide Using Stereocomplex Polylactide as a Nucleating Agent.
    Purnama P; Samsuri M; Iswaldi I
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34070263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcing Effects of Poly(D-Lactide)-g-Multiwall Carbon Nanotubes on Polylactide Nanocomposites.
    Yang JH; Lee JY; Chin IJ
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8086-92. PubMed ID: 26726467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the effect of polylactide in-situ grafting during melt processing on poly(ʟ-lactide)/graphene oxide composite films.
    Fu L; Jiang L; Xing Q; Li T; Shen Z; Dan Y; Huang Y
    Int J Biol Macromol; 2023 Oct; 250():126235. PubMed ID: 37562467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Modification of Hydroxyapatite Nanofiber for Poly(Lactic Acid) Composites with Enhanced Mechanical Strength and Bioactivity.
    Ko HS; Lee S; Jho JY
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33467645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined-modification method of carboxymethyl β-cyclodextrin and lignin for nano-hydroxyapatite to reinforce poly(lactide-co-glycolide) for bone materials.
    Chunyan T; Haojie D; Shuo T; Liuyun J; Bingli M; Yue W; Na Z; Liping S; Shengpei S
    Int J Biol Macromol; 2020 Oct; 160():142-152. PubMed ID: 32450324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of an interface layer on hydroxyapatite whisker/poly(L-lactide) composite and its contribution for improved bioactivity and mechanical properties.
    Yi WJ; Qiu ZS; He H; Liu B; Wang M; Jiang M; Chao ZS; Li LJ; Shen YY; Shen Y
    Nanotechnology; 2020 Mar; 31(23):235703. PubMed ID: 32059208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a stereocomplex between poly(D-lactide) grafted hydroxyapatite and poly(L-lactide): toward a bioactive composite scaffold with enhanced interfacial bonding.
    Shuai C; Yu L; Feng P; Peng S; Pan H; Bai X
    J Mater Chem B; 2022 Jan; 10(2):214-223. PubMed ID: 34927656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Polylactide (PLA) Stereocomplexation on the Microstructure of PLA/PBS Blends and the Cell Morphology of Their Microcellular Foams.
    Sun Z; Wang L; Zhou J; Fan X; Xie H; Zhang H; Zhang G; Shi X
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33076235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation.
    Kum CH; Cho Y; Seo SH; Joung YK; Ahn DJ; Han DK
    Small; 2014 Sep; 10(18):3783-94. PubMed ID: 24820693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Stereocomplexation between Enantiomeric Comb-Shaped Cellulose-g-poly(L-lactide) Nanohybrids and Poly(D-lactide) from the Melt.
    Ma P; Jiang L; Xu P; Dong W; Chen M; Lemstra PJ
    Biomacromolecules; 2015 Nov; 16(11):3723-9. PubMed ID: 26444105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.