These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35160656)
1. Effects of Preparation Procedures and Porosity on Thermoelectric Bulk Samples of Cu Lohani K; Fanciulli C; Scardi P Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160656 [TBL] [Abstract][Full Text] [Related]
2. Eco-friendly p-type Cu Shen Y; Li C; Huang R; Tian R; Ye Y; Pan L; Koumoto K; Zhang R; Wan C; Wang Y Sci Rep; 2016 Sep; 6():32501. PubMed ID: 27666524 [TBL] [Abstract][Full Text] [Related]
3. Enhanced thermoelectric performance in polymorphic heavily Co-doped Cu Zhao Y; Gu Y; Zhang P; Hu X; Wang Y; Zong P; Pan L; Lyu Y; Koumoto K Sci Technol Adv Mater; 2021 May; 22(1):363-372. PubMed ID: 34104116 [TBL] [Abstract][Full Text] [Related]
4. High-Performance Paper-Based Thermoelectric Generator from Cu Das S; Mondal BP; Ranjan P; Datta A ACS Appl Mater Interfaces; 2023 Dec; 15(48):56022-56033. PubMed ID: 38010192 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Bi-Te Park MS; Koo HY; Ha GH; Park YH J Nanosci Nanotechnol; 2020 Jan; 20(1):427-432. PubMed ID: 31383189 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of thermoelectric properties of La-doped SrTiO Ahmed AJ; Nazrul Islam SMK; Hossain R; Kim J; Kim M; Billah M; Hossain MSA; Yamauchi Y; Wang X R Soc Open Sci; 2019 Oct; 6(10):190870. PubMed ID: 31824703 [TBL] [Abstract][Full Text] [Related]
7. Direct vapour transport grown Cu Raval JB; Chaki SH; Patel SR; Giri RK; Solanki MB; Deshpande MP RSC Adv; 2024 Sep; 14(39):28401-28414. PubMed ID: 39239288 [TBL] [Abstract][Full Text] [Related]
8. Carbon-Encapsulated Copper Sulfide Leading to Enhanced Thermoelectric Properties. Chen X; Zhang H; Zhao Y; Liu WD; Dai W; Wu T; Lu X; Wu C; Luo W; Fan Y; Wang L; Jiang W; Chen ZG; Yang J ACS Appl Mater Interfaces; 2019 Jun; 11(25):22457-22463. PubMed ID: 31194506 [TBL] [Abstract][Full Text] [Related]
9. Microstructures and Properties of Cu-rGO Composites Prepared by Microwave Sintering. Chen X; Zhao L; Jiang L; Wang H Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500989 [TBL] [Abstract][Full Text] [Related]
10. Spark Plasma Sintering Effect on Thermoelectric Properties of Nanostructured Bismuth Telluride Synthesized by High Energy Ball Milling. Pundir SK; Singh S; Jain P J Nanosci Nanotechnol; 2020 Jun; 20(6):3902-3908. PubMed ID: 31748093 [TBL] [Abstract][Full Text] [Related]
11. High ZT Value of Pure SnSe Polycrystalline Materials Prepared by High-Energy Ball Milling plus Hot Pressing Sintering. Luo X; Huang B; Guo X; Lu W; Zheng G; Huang B; Li J; Li P; Yang Y ACS Appl Mater Interfaces; 2021 Sep; 13(36):43011-43021. PubMed ID: 34469095 [TBL] [Abstract][Full Text] [Related]
12. Mechanochemical Synthesis of Sustainable Ternary and Quaternary Nanostructured Cu Nautiyal H; Lohani K; Mukherjee B; Isotta E; Malagutti MA; Ataollahi N; Pallecchi I; Putti M; Misture ST; Rebuffi L; Scardi P Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678122 [TBL] [Abstract][Full Text] [Related]
13. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi(2)Te(2.7)Se(0.3) nanoplatelet composites. Soni A; Shen Y; Yin M; Zhao Y; Yu L; Hu X; Dong Z; Khor KA; Dresselhaus MS; Xiong Q Nano Lett; 2012 Aug; 12(8):4305-10. PubMed ID: 22823516 [TBL] [Abstract][Full Text] [Related]
14. Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo Perać S; Savić SM; Branković Z; Bernik S; Radojković A; Kojić S; Vasiljević D; Branković G Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806590 [TBL] [Abstract][Full Text] [Related]
15. Significant Enhancement in the Thermoelectric Performance of Aluminum-Doped ZnO Tuned by Pore Structure. Zhou B; Chen L; Li C; Qi N; Chen Z; Su X; Tang X ACS Appl Mater Interfaces; 2020 Nov; 12(46):51669-51678. PubMed ID: 33151683 [TBL] [Abstract][Full Text] [Related]
16. Right sizes of nano- and microstructures for high-performance and rigid bulk thermoelectrics. Wang H; Bahk JH; Kang C; Hwang J; Kim K; Kim J; Burke P; Bowers JE; Gossard AC; Shakouri A; Kim W Proc Natl Acad Sci U S A; 2014 Jul; 111(30):10949-54. PubMed ID: 25028497 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of Thermoelectric Performance for CuCl Doped P-Type Cu Shi DL; Lam KH Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984274 [TBL] [Abstract][Full Text] [Related]
18. High Thermoelectric Performance of p-Type Bi Liu D; Zhu B; Feng J; Ling Y; Zhou J; Qiu G; Zhou M; Li J; Hou X; Ren B; Huang Y; Liu R ACS Appl Mater Interfaces; 2022 Dec; 14(48):54044-54050. PubMed ID: 36413600 [TBL] [Abstract][Full Text] [Related]
19. Multiscale architectures boosting thermoelectric performance of copper sulfide compound. Chen XQ; Fan SJ; Han C; Wu T; Wang LJ; Jiang W; Dai W; Yang JP Rare Metals; 2021; 40(8):2017-2025. PubMed ID: 33679100 [TBL] [Abstract][Full Text] [Related]
20. Facile Synthesis of Different Morphologies of Cu Wang C; Tian H; Jiang J; Zhou T; Zeng Q; He X; Huang P; Yao Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):26038-26044. PubMed ID: 28737372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]