These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 35160665)
1. The Characterization of Fatigue Damage of 316L Stainless Steel Parts Formed by Selective Laser Melting with Harmonic Generation Technique. Qiao R; Yan X Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160665 [TBL] [Abstract][Full Text] [Related]
2. A Novel Method for Early Fatigue Damage Diagnosis in 316L Stainless Steel Formed by Selective Laser Melting Technology. Yan X; Tang X Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176246 [TBL] [Abstract][Full Text] [Related]
3. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM). Wang Z; Yang S; Huang Y; Fan C; Peng Z; Gao Z Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947139 [TBL] [Abstract][Full Text] [Related]
4. The Mechanisms of Inhibition Effects on Bubble Growth in He-Irradiated 316L Stainless Steel Fabricated by Selective Laser Melting. Shen S; Sun Z; Hao L; Liu X; Zhang J; Yang K; Liu P; Tang X; Fu E Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297056 [TBL] [Abstract][Full Text] [Related]
5. Ultrasonic Measurement of Stress in SLM 316L Stainless Steel Forming Parts Manufactured Using Different Scanning Strategies. Yan X; Pang J; Jing Y Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450648 [TBL] [Abstract][Full Text] [Related]
6. Study on Laser-Electrochemical Hybrid Polishing of Selective Laser Melted 316L Stainless Steel. Liu J; Li C; Yang H; Liu J; Wang J; Deng L; Fang L; Yang C Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542621 [TBL] [Abstract][Full Text] [Related]
7. Influences of Horizontal and Vertical Build Orientations and Post-Fabrication Processes on the Fatigue Behavior of Stainless Steel 316L Produced by Selective Laser Melting. Wood P; Libura T; Kowalewski ZL; Williams G; Serjouei A Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847313 [TBL] [Abstract][Full Text] [Related]
8. Collaborative Optimization of Density and Surface Roughness of 316L Stainless Steel in Selective Laser Melting. Deng Y; Mao Z; Yang N; Niu X; Lu X Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32244593 [TBL] [Abstract][Full Text] [Related]
9. Microstructure and Nanoindentation Behavior of FeCoNiAlTi High-Entropy Alloy-Reinforced 316L Stainless Steel Composite Fabricated by Selective Laser Melting. Zhang X; Yang D; Jia Y; Wang G Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903136 [TBL] [Abstract][Full Text] [Related]
10. Effect of High Laser Energy Density on Selective Laser Melted 316L Stainless Steel: Analysis on Metallurgical and Mechanical Properties and Comparison with Wrought 316L Stainless Steel. Shanmuganathan PK; Purushothaman DB; Ponnusamy M 3D Print Addit Manuf; 2023 Jun; 10(3):383-392. PubMed ID: 37346193 [TBL] [Abstract][Full Text] [Related]
11. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Čapek J; Machová M; Fousová M; Kubásek J; Vojtěch D; Fojt J; Jablonská E; Lipov J; Ruml T Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():631-9. PubMed ID: 27612756 [TBL] [Abstract][Full Text] [Related]
13. The Effect of a Scanning Strategy on the Residual Stress of 316L Steel Parts Fabricated by Selective Laser Melting (SLM). Wang D; Wu S; Yang Y; Dou W; Deng S; Wang Z; Li S Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30257477 [TBL] [Abstract][Full Text] [Related]
14. High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging. Opěla P; Benč M; Kolomy S; Jakůbek Z; Beranová D Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176281 [TBL] [Abstract][Full Text] [Related]
15. Effect of Hydrogen on the Structure and Mechanical Properties of 316L Steel and Inconel 718 Alloy Processed by Selective Laser Melting. Maksimkin IP; Yukhimchuk AA; Malkov IL; Boitsov IE; Musyaev RK; Buchirin AV; Baluev VV; Vertei AV; Shevnin EV; Shotin SV; Chuvil'deev VN; Gryaznov MY Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888271 [TBL] [Abstract][Full Text] [Related]
16. Effect of ultrasonic surface impact on the microstructural characterization and mechanical properties of 316L austenitic stainless steel. Zhu J; Zhuang ML; Qi Y; Chen B; Cao X PLoS One; 2024; 19(7):e0307400. PubMed ID: 39052615 [TBL] [Abstract][Full Text] [Related]
17. Influence of Build Angle and Polishing Roughness on Corrosion Resistance of 316L Stainless Steel Fabricated by SLM Method. Wang H; Shu X; Zhao J Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683317 [TBL] [Abstract][Full Text] [Related]
18. Study on Mechanism of Structure Angle on Microstructure and Properties of SLM-Fabricated 316L Stainless Steel. Li X; Yi D; Wu X; Zhang J; Yang X; Zhao Z; Wang J; Liu B; Bai P Front Bioeng Biotechnol; 2021; 9():778332. PubMed ID: 34805125 [TBL] [Abstract][Full Text] [Related]
19. Effect of Laser Speed and Hatch Spacing on the Corrosion Behavior of 316L Stainless Steel Produced by Selective Laser Melting. Collazo A; Figueroa R; Pérez C; Nóvoa XR Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207894 [TBL] [Abstract][Full Text] [Related]
20. Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting. Obeidi MA; McCarthy E; O'Connell B; Ul Ahad I; Brabazon D Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]