These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 35160700)
1. Elasto-Plastic Fatigue Crack Growth Behavior of Extruded Mg Alloy with Deformation Anisotropy Due to Stress Ratio Fluctuation. Masuda K; Ishihara S; Oguma N; Ishiguro M; Sakamoto Y Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160700 [TBL] [Abstract][Full Text] [Related]
2. Revisiting Classical Issues of Fatigue Crack Growth Using a Non-Linear Approach. Borges MF; Neto DM; Antunes FV Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291754 [TBL] [Abstract][Full Text] [Related]
3. Effect of Residual Stresses on Fatigue Crack Growth: A Numerical Study Based on Cumulative Plastic Strain at the Crack Tip. Neto DM; Borges MF; Sérgio ER; Antunes FV Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329608 [TBL] [Abstract][Full Text] [Related]
4. Unusual Fatigue Crack Growth Behavior of Long Cracks at Low Stress Intensity Factor Ranges. Kujawski D; Vasudevan AK Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399043 [TBL] [Abstract][Full Text] [Related]
5. FCG Modelling Considering the Combined Effects of Cyclic Plastic Deformation and Growth of Micro-Voids. Sérgio ER; Antunes FV; Borges MF; Neto DM Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361497 [TBL] [Abstract][Full Text] [Related]
6. In Situ Measurement of Cyclic Plastic Zone and Internal Strain Response of Q&P Steel near Fatigue Crack Tip Region Based on Micro-DIC. Gao H; Lin Z; Huang X; Shang H; Zhan J Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079495 [TBL] [Abstract][Full Text] [Related]
7. Effect of build direction dependent grain structure on fatigue crack growth of biomedical Co-29Cr-6Mo alloy processed by laser powder bed fusion. Anuar A; Guraya T; Chen ZW; Ramezani M; San Sebastián-Ormazabal M J Mech Behav Biomed Mater; 2021 Nov; 123():104741. PubMed ID: 34461399 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation. Shiraiwa T; Briffod F; Enoki M Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226 [TBL] [Abstract][Full Text] [Related]
9. Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy. Masuda K; Ishihara S; Oguma N Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572686 [TBL] [Abstract][Full Text] [Related]
10. Research on the Evolution Law Physical Short Fatigue Crack and Tip Deformation Fields during Crack Closure Process of the Q&P Steel. Shang H; Lin Z; Gao H; Shan X; Zhan J Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013905 [TBL] [Abstract][Full Text] [Related]
12. A Fatigue Life Prediction Method Based on Strain Intensity Factor. Zhang W; Liu H; Wang Q; He J Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049 [TBL] [Abstract][Full Text] [Related]
13. Elasto-Plastic Fracture Mechanics Analysis of the Effect of Shot Peening on 300M Steel. Hou S; Cai Z; Zhu Y; Zhao Q; Chen Y; Gao H; Wang H; Li J Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34201930 [TBL] [Abstract][Full Text] [Related]
14. Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen. Neikter M; Colliander M; de Andrade Schwerz C; Hansson T; Åkerfeldt P; Pederson R; Antti ML Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32178389 [TBL] [Abstract][Full Text] [Related]
15. Anisotropic Low Cycle Behavior of the Extruded 7075 Al Alloy. Ma J; Wang Q; Yang Y; Yang F; Dong B; Che X; Cao H; Zhang T; Zhang Z Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443029 [TBL] [Abstract][Full Text] [Related]
16. Biaxial fatigue crack propagation behavior of ultrahigh molecular weight polyethylene reinforced by carbon nanofibers and hydroxyapatite. Liu Z; Wang J; Gao H; Gao L J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1603-1615. PubMed ID: 31633296 [TBL] [Abstract][Full Text] [Related]
17. Research on the Fatigue Crack Growth Behavior of a Zr/Ti/Steel Composite Plate with a Crack Normal to the Interface. Zhou B; Yuan J; Song H; Zhou L; Chang L; Zhou C; Ye C; Zhang B Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569991 [TBL] [Abstract][Full Text] [Related]
18. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. Fintová S; Kunz L J Mech Behav Biomed Mater; 2015 Feb; 42():219-28. PubMed ID: 25498295 [TBL] [Abstract][Full Text] [Related]
19. Modelling Fatigue Crack Growth in High-Density Polyethylene and Acrylonitrile Butadiene Styrene Polymers. Jones R; Kinloch AJ; Ang ASM Polymers (Basel); 2024 May; 16(9):. PubMed ID: 38732768 [TBL] [Abstract][Full Text] [Related]
20. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel. Gołebiowski B; Swiatnicki WA; Gaspérini M J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]