These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35160723)

  • 1. Transient Phase-Driven Cyclic Deformation in Additively Manufactured 15-5 PH Steel.
    Lam TN; Wu YH; Liu CJ; Chae H; Lee SY; Jain J; An K; Huang EW
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205.
    Li S; Jiang W; Xie X; Dong Z
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation behavior of duplex austenite and
    Kwon KH; Suh BC; Baik SI; Kim YW; Choi JK; Kim NJ
    Sci Technol Adv Mater; 2013 Feb; 14(1):014204. PubMed ID: 27877552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Build Direction on the Mechanical Properties of a Martensitic Stainless Steel Fabricated by Selective Laser Melting.
    Shen LC; Yang XH; Ho JR; Tung PC; Lin CK
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33203109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Rolling Temperature on Microstructure Evolution and Mechanical Properties of AISI316LN Austenitic Stainless Steel.
    Xiong Y; Yue Y; He T; Lu Y; Ren F; Cao W
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30158476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Aging Treatment Regimes on Microstructure and Mechanical Properties of Selective Laser Melted 17-4 PH Steel.
    Dong D; Wang J; Chen C; Tang X; Ye Y; Ren Z; Yin S; Yuan Z; Liu M; Zhou K
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.
    Hossain R; Pahlevani F; Quadir MZ; Sahajwalla V
    Sci Rep; 2016 Oct; 6():34958. PubMed ID: 27725722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Work hardening behavior of hot-rolled metastable Fe
    Kwon H; Harjo S; Kawasaki T; Gong W; Jeong SG; Kim ES; Sathiyamoorthi P; Kato H; Kim HS
    Sci Technol Adv Mater; 2022; 23(1):579-586. PubMed ID: 36212683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path.
    Liu X; Zhang S; Bao Y; Zhang Z; Yue Z
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction.
    Harjo S; Tsuchida N; Abe J; Gong W
    Sci Rep; 2017 Nov; 7(1):15149. PubMed ID: 29123143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unravelling thermal history during additive manufacturing of martensitic stainless steel.
    Chae H; Huang EW; Woo W; Kang SH; Jain J; An K; Lee SY
    J Alloys Compd; 2021 Mar; 857():157555. PubMed ID: 33071463
    [No Abstract]   [Full Text] [Related]  

  • 12. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel.
    Dong H; Li ZC; Somani MC; Misra RDK
    J Mech Behav Biomed Mater; 2021 Jul; 119():104489. PubMed ID: 33780850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Cu on the Microstructure and Mechanical Properties of a Low-Carbon Martensitic Stainless Steel.
    Ma J; Song Y; Jiang H; Rong L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel.
    Yadollahi A; Simsiriwong J; Thompson SM; Shamsaei N
    Data Brief; 2016 Jun; 7():89-92. PubMed ID: 26955653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantageous Implications of Reversed Austenite for the Tensile Properties of Super 13Cr Martensitic Stainless Steel.
    Wang P; Zheng W; Yu X; Wang Y
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Deformation Behavior and Microstructural Evolution in Multiphase Steel.
    Lu J; Yu H; Duan X; Song C
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30445674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH.
    Masoomi M; Shamsaei N; Winholtz RA; Milner JL; Gnäupel-Herold T; Elwany A; Mahmoudi M; Thompson SM
    Data Brief; 2017 Aug; 13():408-414. PubMed ID: 28664178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-Situ Characterization of Retained Austenite Orientation in Quenching and Partitioning Steel via Uniaxial Tensile Tests.
    Gao P; Liu J; Chen W; Li F; Pang J; Zhao Z
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on Creep Deformation and Age Strengthening Behavior of 304 Stainless Steel under High Stress Levels.
    Zhan L; Xie H; Yang Y; Zhao S; Chang Z; Xia Y; Zheng Z; Zhou Y
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure Evolution and Orientation Relationship of Reverted Austenite in 13Cr Supermartensitic Stainless Steel During the Tempering Process.
    Zhang Y; Zhang C; Yuan X; Li D; Yin Y; Li S
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30781433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.