These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35160812)

  • 1. Effect of Delamination and Grain Refinement on Fracture Energy of Ultrafine-Grained Steel Determined Using an Instrumented Charpy Impact Test.
    Inoue T; Kimura Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.
    Inoue T; Kimura Y; Ochiai S
    Sci Technol Adv Mater; 2012 Jun; 13(3):035005. PubMed ID: 27877493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ductile-to-Brittle Transition and Brittle Fracture Stress of Ultrafine-Grained Low-Carbon Steel.
    Inoue T; Qiu H; Ueji R; Kimura Y
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Tempforming on Strength and Toughness of Medium-Carbon Low-Alloy Steel.
    Yuzbekova D; Dudko V; Pydrin A; Gaidar S; Mironov S; Kaibyshev R
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse temperature dependence of toughness in an ultrafine grain-structure steel.
    Kimura Y; Inoue T; Yin F; Tsuzaki K
    Science; 2008 May; 320(5879):1057-60. PubMed ID: 18497294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Side-grooved Charpy impact testing: Assessment of splitting and fracture properties of high-toughness plate steels.
    Di Gioacchino F; Lucon E; Mitchell EB; Clarke KD; Matlock DK
    Mater Sci Eng A Struct Mater; 2021 Jul; 252():. PubMed ID: 37554341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion resistance of Si-Al-bearing ultrafine-grained weathering steel.
    Nishimura T
    Sci Technol Adv Mater; 2008 Jan; 9(1):013005. PubMed ID: 27877923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.
    Cao W; Zhang M; Huang C; Xiao S; Dong H; Weng Y
    Sci Rep; 2017 Feb; 7():41459. PubMed ID: 28150692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Texture on Impact Toughness of Ferritic Fe-20Cr-5Al Oxide Dispersion Strengthened Steel.
    Sánchez-Gutiérrez J; Chao J; Vivas J; Galvez F; Capdevila C
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making ultrastrong steel tough by grain-boundary delamination.
    Liu L; Yu Q; Wang Z; Ell J; Huang MX; Ritchie RO
    Science; 2020 Jun; 368(6497):1347-1352. PubMed ID: 32381592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and Mechanical Properties of a Cold-Rolled Ultrafine-Grained Dual-Phase Steel.
    Pan Z; Gao B; Lai Q; Chen X; Cao Y; Liu M; Zhou H
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30103410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-strong dislocation-structured high-carbon martensite steel.
    Sun JJ; Liu YN; Zhu YT; Lian FL; Liu HJ; Jiang T; Guo SW; Liu WQ; Ren XB
    Sci Rep; 2017 Jul; 7(1):6596. PubMed ID: 28747764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of ultrafine-grained structure on the mechanical properties and biocompatibility of austenitic stainless steels.
    Rybalchenko OV; Anisimova NY; Kiselevsky MV; Belyakov AN; Tokar AA; Terent'ev VF; Prosvirnin DV; Rybalchenko GV; Raab GI; Dobatkin SV
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1460-1468. PubMed ID: 31617961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile route to bulk ultrafine-grain steels for high strength and ductility.
    Gao J; Jiang S; Zhang H; Huang Y; Guan D; Xu Y; Guan S; Bendersky LA; Davydov AV; Wu Y; Zhu H; Wang Y; Lu Z; Rainforth WM
    Nature; 2021 Feb; 590(7845):262-267. PubMed ID: 33568822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties.
    Zhao L; Park N; Tian Y; Shibata A; Tsuji N
    Sci Rep; 2016 Dec; 6():39127. PubMed ID: 27966603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the microstructure and mesotexture formed during thermomechanical controlled rolling in microalloyed steels.
    Wu SJ; Davis CL
    J Microsc; 2004 Mar; 213(3):262-72. PubMed ID: 15009694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Effective Grain Size on Low Temperature Toughness of High-Strength Pipeline Steel.
    Niu Y; Jia S; Liu Q; Tong S; Li B; Ren Y; Wang B
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Correlation Between Fracture Toughness and Charpy Impact Energy of Cryogenic Steel Welds.
    An G; Hong S; Park J; Han I
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4921-4925. PubMed ID: 33691891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dataset on instrumented Charpy V-notch impact tests of different zones of electron beam welded S960M steel.
    Sisodia R; Gáspár M
    Data Brief; 2023 Apr; 47():108949. PubMed ID: 36852003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels.
    Etienne A; Radiguet B; Cunningham NJ; Odette GR; Valiev R; Pareige P
    Ultramicroscopy; 2011 May; 111(6):659-63. PubMed ID: 21216102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.