These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 35160922)
41. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. Nemoto J; Saito T; Isogai A ACS Appl Mater Interfaces; 2015 Sep; 7(35):19809-15. PubMed ID: 26301859 [TBL] [Abstract][Full Text] [Related]
42. Comparison of MERV 16 and HEPA filters for cab filtration of underground mining equipment. Cecala AB; Organiscak JA; Noll JD; Zimmer JA Min Eng; 2016 Aug; 68(8):50-58. PubMed ID: 27524838 [TBL] [Abstract][Full Text] [Related]
43. Efficient capture of airborne PM by nanotubular conjugated microporous polymers based filters under harsh conditions. Tian Z; Lei Y; Ye X; Fan Y; Zhou P; Zhu Z; Sun H; Liang W; Li A J Hazard Mater; 2022 Feb; 423(Pt A):127047. PubMed ID: 34523490 [TBL] [Abstract][Full Text] [Related]
44. Binary Polyamide-Imide Fibrous Superelastic Aerogels for Fire-Retardant and High-Temperature Air Filtration. Hua Y; Cui W; Ji Z; Wang X; Wu Z; Liu Y; Li Y Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433061 [TBL] [Abstract][Full Text] [Related]
45. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet. Xu B; Yu X; Wu Y; Lin Z Environ Technol; 2017 Mar; 38(5):558-565. PubMed ID: 27351253 [TBL] [Abstract][Full Text] [Related]
46. Development of novel cardboard filters very effective in removing airborne bacteria from confined environments. Candiani G; Del Curto B; Malloggi C; Cigada A J Appl Biomater Biomech; 2011; 9(3):207-13. PubMed ID: 22190266 [TBL] [Abstract][Full Text] [Related]
47. Preparation and characterization of air nanofilters based on cellulose nanofibers. Sepahvand S; Bahmani M; Ashori A; Pirayesh H; Yu Q; Nikkhah Dafchahi M Int J Biol Macromol; 2021 Jul; 182():1392-1398. PubMed ID: 34000313 [TBL] [Abstract][Full Text] [Related]
48. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. H P S AK; Saurabh CK; A S A; Nurul Fazita MR; Syakir MI; Davoudpour Y; Rafatullah M; Abdullah CK; M Haafiz MK; Dungani R Carbohydr Polym; 2016 Oct; 150():216-26. PubMed ID: 27312632 [TBL] [Abstract][Full Text] [Related]
49. Cigarettes with defective filters marketed for 40 years: what Philip Morris never told smokers. Pauly JL; Mepani AB; Lesses JD; Cummings KM; Streck RJ Tob Control; 2002 Mar; 11 Suppl 1(Suppl 1):I51-61. PubMed ID: 11893815 [TBL] [Abstract][Full Text] [Related]
50. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency. Li P; Zong Y; Zhang Y; Yang M; Zhang R; Li S; Wei F Nanoscale; 2013 Apr; 5(8):3367-72. PubMed ID: 23467703 [TBL] [Abstract][Full Text] [Related]
51. Free-Standing Polyurethane Nanofiber/Nets Air Filters for Effective PM Capture. Zuo F; Zhang S; Liu H; Fong H; Yin X; Yu J; Ding B Small; 2017 Dec; 13(46):. PubMed ID: 29044916 [TBL] [Abstract][Full Text] [Related]
52. Nanocellulose-based membrane as a potential material for high performance biodegradable aerosol respirators for SARS-CoV-2 prevention: a review. Stanislas TT; Bilba K; de Oliveira Santos RP; Onésippe-Potiron C; Savastano Junior H; Arsène MA Cellulose (Lond); 2022; 29(15):8001-8024. PubMed ID: 35990792 [TBL] [Abstract][Full Text] [Related]
53. Improving indoor air quality by using the new generation of corrugated cardboard-based filters. Candiani G; Del Curto B; Cigada A J Appl Biomater Funct Mater; 2012 Sep; 10(2):157-62. PubMed ID: 23015374 [TBL] [Abstract][Full Text] [Related]
55. Core-Shell Nanofibrous Materials with High Particulate Matter Removal Efficiencies and Thermally Triggered Flame Retardant Properties. Liu K; Liu C; Hsu PC; Xu J; Kong B; Wu T; Zhang R; Zhou G; Huang W; Sun J; Cui Y ACS Cent Sci; 2018 Jul; 4(7):894-898. PubMed ID: 30062118 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters. Alderman SL; Parsons MS; Hogancamp KU; Waggoner CA J Occup Environ Hyg; 2008 Nov; 5(11):713-20. PubMed ID: 18726819 [TBL] [Abstract][Full Text] [Related]
57. High-performance filter membrane composed of oxidized Poly (arylene sulfide sulfone) nanofibers for the high-efficiency air filtration. Wei Z; Su Q; Yang J; Zhang G; Long S; Wang X J Hazard Mater; 2021 Sep; 417():126033. PubMed ID: 33992920 [TBL] [Abstract][Full Text] [Related]
58. Biodegradable CA/CPB electrospun nanofibers for efficient retention of airborne nanoparticles. de Almeida DS; Martins LD; Muniz EC; Rudke AP; Squizzato R; Beal A; de Souza PR; Bonfim DPF; Aguiar ML; Gimenes ML Process Saf Environ Prot; 2020 Dec; 144():177-185. PubMed ID: 32834561 [TBL] [Abstract][Full Text] [Related]
59. Hierarchical Structured Polyimide-Silica Hybrid Nano/Microfiber Filters Welded by Solvent Vapor for Air Filtration. Li D; Shen Y; Wang L; Liu F; Deng B; Liu Q Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33120971 [TBL] [Abstract][Full Text] [Related]
60. High-performance anti-haze window screen based on multiscale structured polyvinylidene fluoride nanofibers. Xiong J; Shao W; Wang L; Cui C; Gao Y; Jin Y; Yu H; Han P; Liu F; He J J Colloid Interface Sci; 2022 Feb; 607(Pt 1):711-719. PubMed ID: 34530191 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]