These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35160938)

  • 41. The Influence of Calcareous Fly Ash on the Effectiveness of Plasticizers and Superplasticizers.
    Gołaszewski J; Ponikiewski T; Kostrzanowska-Siedlarz A; Miera P
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32414165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leaching of monolithic and granular alkali activated slag-fly ash materials, as a function of the mixture design.
    Keulen A; van Zomeren A; Dijkstra JJ
    Waste Manag; 2018 Aug; 78():497-508. PubMed ID: 32559938
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of Fly Ash Inclusion and Alkali Activation on Physical, Mechanical, and Chemical Properties of Clay.
    Turan C; Javadi AA; Vinai R; Russo G
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806753
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of Accelerating Admixtures on the Reactivity of Synthetic Aluminosilicate Glasses.
    Gonzalez-Panicello L; Garcia-Lodeiro I; Puertas F; Palacios M
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactivity and Microstructure of Metakaolin Based Geopolymers: Effect of Fly Ash and Liquid/Solid Contents.
    Vogt O; Ukrainczyk N; Ballschmiede C; Koenders E
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31653060
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strength and Microstructure of Class-C Fly Ash and GGBS Blend Geopolymer Activated in NaOH & NaOH + Na
    Sasui S; Kim G; Nam J; Koyama T; Chansomsak S
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877654
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of aluminum on the expansion and microstructure of alkali-activated MSWI fly ash-based pastes.
    Tian X; Rao F; León-Patiño CA; Song S
    Chemosphere; 2020 Feb; 240():124986. PubMed ID: 31726592
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of the stability of hardened slag paste for the stabilization/solidification of wastes containing heavy metal ions.
    Rha CY; Kang SK; Kim CE
    J Hazard Mater; 2000 Apr; 73(3):255-67. PubMed ID: 10751696
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Comprehensive Study on the Hardening Features and Performance of Self-Compacting Concrete with High-Volume Fly Ash and Slag.
    Yang Z; Liu S; Yu L; Xu L
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of Mechanical and Permeability Characteristics of Microfiber-Reinforced Recycled Aggregate Concrete with Different Potential Waste Mineral Admixtures.
    Alyousef R; Ali B; Mohammed A; Kurda R; Alabduljabbar H; Riaz S
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydraulic activity of cement mixed with slag from vitrified solid waste incinerator fly ash.
    Lin KL; Wang KS; Tzeng BY; Lin CY
    Waste Manag Res; 2003 Dec; 21(6):567-74. PubMed ID: 14986718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental Investigation of Synchronous Grouting Material Prepared with Different Mineral Admixtures.
    Li JF; Liu YT; Li SJ; Song Y
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161205
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator.
    Mohammed BS; Haruna S; Wahab MMA; Liew MS; Haruna A
    Heliyon; 2019 Sep; 5(9):e02255. PubMed ID: 31687531
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of extended mixing processes on fresh, hardened and durable properties of cement systems incorporating fly ash.
    Sereewatthanawut I; Panwisawas C; Ngamkhanong C; Prasittisopin L
    Sci Rep; 2023 Apr; 13(1):6091. PubMed ID: 37055507
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on the Volumetric Stability and Mechanical Properties of Cement-Fly-Ash-Stabilized Steel Slag.
    Zhou M; Cheng X; Chen X
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33494195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study on Mechanical and Frost Resistance Properties of Slag and Macadam Stabilized with Cement and Fly Ash.
    Li H; Yan P; Tian J; Sun H; Yin J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885396
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements.
    Wu YH; Huang R; Tsai CJ; Lin WT
    Materials (Basel); 2015 Feb; 8(2):784-798. PubMed ID: 28787970
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical Properties of Furnace Slag and Coal Gangue Mixtures Stabilized by Cement and Fly Ash.
    Li H; Zhang H; Yan P; Yan C; Tong Y
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832503
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Radiological characterisation of alkali-activated construction materials containing red mud, fly ash and ground granulated blast-furnace slag.
    Sas Z; Sha W; Soutsos M; Doherty R; Bondar D; Gijbels K; Schroeyers W
    Sci Total Environ; 2019 Apr; 659():1496-1504. PubMed ID: 31096359
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Setting and Hardening Behaviour of Alkali-Activated Landfilled Fly Ash-Slag Binder at Room Temperature.
    Liu W; Lin L; Wang S; Peng X; Wu B; Sun K; Zeng L
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32674297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.