These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35161035)

  • 1. The Microstructure and Corrosion Resistance of Fe-B-W-Mn-Al Alloy in Liquid Zinc.
    Luo Z; Liu K; Cui Z; Ouyang X; Zhang C; Yin F
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Tungsten Addition on the Microstructure and Corrosion Resistance of Fe-3.5B Alloy in Liquid Zinc.
    Liu X; Wang M; Yin F; Ouyang X; Li Z
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of A Mo Addition on the Interfacial Morphologies and Corrosion Resistances of Novel Fe-Cr-B Alloys Immersed in Molten Aluminum.
    Ling Z; Chen W; Xu W; Zhang X; Lu T; Liu J
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30646570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Si Content on Microstructures and Electrochemical Properties of Al-xSi-3.5Fe Coating Alloy.
    Wu Y; Shen Y; Wang Q; Liu Y; Shi D; Liu Y; Su X
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Al Element on the Microstructure and Properties of Cu-Ni-Fe-Mn Alloys.
    Yang R; Wen J; Zhou Y; Song K; Song Z
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Sn Addition on Microstructure and Corrosion Behavior of As-Extruded Mg-5Zn-4Al Alloy.
    Ding J; Liu X; Wang Y; Huang W; Wang B; Wei S; Xia X; Liang Y; Chen X; Pan F; Xu B
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure, Mechanical Properties, and in Vitro Corrosion Behavior of Biodegradable Zn-1Fe-xMg Alloy.
    Xue P; Ma M; Li Y; Li X; Yuan J; Shi G; Wang K; Zhang K
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33137896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphating treatment and corrosion properties of Mg-Mn-Zn alloy for biomedical application.
    Xu L; Zhang E; Yang K
    J Mater Sci Mater Med; 2009 Apr; 20(4):859-67. PubMed ID: 19034618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Cooling Rate at the Eutectoid Transformation Temperature on the Corrosion Resistance of Zn-4Al Alloy.
    Lachowicz MM; Jasionowski R
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrosion Behavior of Homogenized and Extruded 1100 Aluminum Alloy in Acidic Salt Spray.
    Zhao Y; Lu Q; Wang Q; Li D; Li F; Luo Y
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure and in vitro degradation performance of Mg-Zn-Mn alloys for biomedical application.
    Rosalbino F; De Negri S; Scavino G; Saccone A
    J Biomed Mater Res A; 2013 Mar; 101(3):704-11. PubMed ID: 22941918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of solid-solution and aging treatment on corrosion behavior of orthogonal designed and vacuum melted Mg-Zn-Ca-Mn alloys.
    Liu D; Zhou T; Liu Z; Guo B
    J Appl Biomater Funct Mater; 2020; 18():2280800019887906. PubMed ID: 31996069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Aluminum Addition on the Microstructure and Properties of Non-Eutectic Sn-20Bi Solder Alloys.
    Yang W; Li J; Li Y; Feng J; Wu J; Zhou X; Yu A; Wang J; Liang S; Wei M; Zhan Y
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30979091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Corrosion Resistance of Aluminosilicate Refractories towards Molten Al-Mg Alloy Using Non-Wetting Additives: A Short Review.
    Barandehfard F; Aluha J; Hekmat-Ardakan A; Gitzhofer F
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32937834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices.
    Farabi E; Sharp JA; Vahid A; Fabijanic DM; Barnett MR; Gallo SC
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111897. PubMed ID: 33641900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents.
    Hermawan H; Dubé D; Mantovani D
    J Biomed Mater Res A; 2010 Apr; 93(1):1-11. PubMed ID: 19437432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of degradation behaviour and biocompatibility of Zn-Fe alloy prepared by electrodeposition.
    He J; Li DW; He FL; Liu YY; Liu YL; Zhang CY; Ren F; Ye YJ; Deng XD; Yin DC
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111295. PubMed ID: 32919656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molten Salt Corrosion Behavior of Dual-Phase High Entropy Alloy for Concentrating Solar Power Systems.
    Patel K; Hasannaeimi V; Sadeghilaridjani M; Muskeri S; Mahajan C; Mukherjee S
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg, Ag) alloys for guided bone regeneration.
    Zhang Y; Yan Y; Xu X; Lu Y; Chen L; Li D; Dai Y; Kang Y; Yu K
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1021-1034. PubMed ID: 30889634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.