BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35161082)

  • 1. Study of Molybdenite Floatability: Effect of Clays and Seawater.
    Soto C; Toro N; Gallegos S; Gálvez E; Robledo-Cabrera A; Jeldres RI; Jeldres M; Robles P; López-Valdivieso A
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Interaction of Lignosulfonates for the Separation of Molybdenite and Chalcopyrite in Seawater Flotation Processes.
    Quiroz C; Murga R; Giraldo JD; Gutierrez L; Uribe L
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress on research of molybdenite flotation: A review.
    Yi G; Macha E; Van Dyke J; Ed Macha R; McKay T; Free ML
    Adv Colloid Interface Sci; 2021 Sep; 295():102466. PubMed ID: 34332747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fundamental roles of monovalent and divalent cations with sulfates on molybdenite flotation in the absence of flotation reagents.
    Li Y; Lartey C; Song S; Li Y; Gerson AR
    RSC Adv; 2018 Jun; 8(41):23364-23371. PubMed ID: 35540155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Sodium Alginate on the Flotation Separation of Molybdenite From Chalcopyrite Using Kerosene as Collector.
    Zeng G; Ou L; Zhang W; Zhu Y
    Front Chem; 2020; 8():242. PubMed ID: 32411654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of magnetized water on molybdenite flotation and its mechanism.
    Wang Z; He T; Li H; Wang Y
    Environ Technol; 2022 Jan; 43(1):107-115. PubMed ID: 32508256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flocculation of Clay-Based Tailings: Differences of Kaolin and Sodium Montmorillonite in Salt Medium.
    Nieto S; Toro N; Robles P; Gálvez E; Gallegos S; Jeldres RI
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Montmorillonite, Kaolinite, or Illite in Pyrite Flotation: Differences in Clay Behavior Based on Their Structures.
    Chen L; Zhao Y; Bai H; Ai Z; Chen P; Hu Y; Song S; Komarneni S
    Langmuir; 2020 Sep; 36(36):10860-10867. PubMed ID: 32813528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into the beneficial roles of dispersants in reducing negative influence of Mg
    Li Y; Yang X; Fu J; Li W; Hu C
    RSC Adv; 2020 Jul; 10(46):27401-27406. PubMed ID: 35516951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of plastics by froth flotation. The role of size, shape and density of the particles.
    Pita F; Castilho A
    Waste Manag; 2017 Feb; 60():91-99. PubMed ID: 27478025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Use of Styrene-Based Nanoparticles to Mitigate the Effect of Montmorillonite in Copper Sulfide Recovery by Flotation.
    Estrada D; Murga R; Rubilar O; Amalraj J; Gutierrez L; Uribe L
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction Mechanisms between Air Bubble and Molybdenite Surface: Impact of Solution Salinity and Polymer Adsorption.
    Xie L; Wang J; Yuan D; Shi C; Cui X; Zhang H; Liu Q; Liu Q; Zeng H
    Langmuir; 2017 Mar; 33(9):2353-2361. PubMed ID: 28191980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Simulations of the Interactions between a Hydrolyzed Polyacrylamide with the Face and Edge Surfaces of Molybdenite.
    Echeverry-Vargas L; Estrada D; Gutierrez L
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.
    Beaussart A; Parkinson L; Mierczynska-Vasilev A; Beattie DA
    J Colloid Interface Sci; 2012 Feb; 368(1):608-15. PubMed ID: 22137169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling Interaction Mechanisms between Molybdenite and a Dodecane Oil Droplet Using Atomic Force Microscopy.
    Feng L; Manica R; Grundy JS; Liu Q
    Langmuir; 2019 May; 35(18):6024-6031. PubMed ID: 30991805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals.
    Aghazadeh S; Mousavinezhad SK; Gharabaghi M
    Adv Colloid Interface Sci; 2015 Nov; 225():203-17. PubMed ID: 26601925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational diffusion of water and its dependence on temperature in charged and uncharged clays: A neutron scattering study.
    González Sánchez F; Jurányi F; Gimmi T; Van Loon L; Unruh T; Diamond LW
    J Chem Phys; 2008 Nov; 129(17):174706. PubMed ID: 19045369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicological evaluation of clay minerals and derived nanocomposites: a review.
    Maisanaba S; Pichardo S; Puerto M; Gutiérrez-Praena D; Cameán AM; Jos A
    Environ Res; 2015 Apr; 138():233-54. PubMed ID: 25732897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays.
    Herrera P; Burghardt RC; Phillips TD
    Vet Microbiol; 2000 Jun; 74(3):259-72. PubMed ID: 10808094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of contact angle and contact angle hysteresis on the floatability of spheres at the air-water interface.
    Feng DX; Nguyen AV
    Adv Colloid Interface Sci; 2017 Oct; 248():69-84. PubMed ID: 28780963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.