These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 35161113)
1. Foaming of PCL-Based Composites Using scCO Kosowska K; Krzysztoforski J; Henczka M Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161113 [TBL] [Abstract][Full Text] [Related]
2. Foaming of PCL-Based Composites Using scCO Kosowska K; Krzysztoforski J; Henczka M Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683156 [TBL] [Abstract][Full Text] [Related]
3. Technical development and application of supercritical CO Zhou Y; Tian Y; Zhang M Sci Rep; 2024 Mar; 14(1):6825. PubMed ID: 38514733 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of Highly Interconnected Poly(ε-caprolactone)/cellulose Nanofiber Composite Foams by Microcellular Foaming and Leaching Processes. Li J; Wang H; Zhou H; Jiang J; Wang X; Li Q ACS Omega; 2021 Sep; 6(35):22672-22680. PubMed ID: 34514238 [TBL] [Abstract][Full Text] [Related]
5. Dexamethasone-loaded poly(ε-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. de Matos MB; Piedade AP; Alvarez-Lorenzo C; Concheiro A; Braga ME; de Sousa HC Int J Pharm; 2013 Nov; 456(2):269-81. PubMed ID: 24008084 [TBL] [Abstract][Full Text] [Related]
6. Novel Fabricating Process for Porous Polyglycolic Acid Scaffolds by Melt-Foaming Using Supercritical Carbon Dioxide. Zhang J; Yang S; Yang X; Xi Z; Zhao L; Cen L; Lu E; Yang Y ACS Biomater Sci Eng; 2018 Feb; 4(2):694-706. PubMed ID: 33418757 [TBL] [Abstract][Full Text] [Related]
7. Solvent-Free Processing of Drug-Loaded Poly(ε-Caprolactone) Scaffolds with Tunable Macroporosity by Combination of Supercritical Foaming and Thermal Porogen Leaching. Santos-Rosales V; Ardao I; Goimil L; Gomez-Amoza JL; García-González CA Polymers (Basel); 2021 Jan; 13(1):. PubMed ID: 33406680 [TBL] [Abstract][Full Text] [Related]
8. Progress in the Preparation, Properties, and Applications of PLA and Its Composite Microporous Materials by Supercritical CO Peng K; Mubarak S; Diao X; Cai Z; Zhang C; Wang J; Wu L Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297898 [TBL] [Abstract][Full Text] [Related]
9. Open-pore biodegradable foams prepared via gas foaming and microparticulate templating. Salerno A; Iannace S; Netti PA Macromol Biosci; 2008 Jul; 8(7):655-64. PubMed ID: 18350540 [TBL] [Abstract][Full Text] [Related]
10. Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO Moghadam MZ; Hassanajili S; Esmaeilzadeh F; Ayatollahi M; Ahmadi M J Mech Behav Biomed Mater; 2017 May; 69():115-127. PubMed ID: 28068621 [TBL] [Abstract][Full Text] [Related]
11. Porous poly(D,L-lactic acid) foams with tunable structure and mechanical anisotropy prepared by supercritical carbon dioxide. Floren M; Spilimbergo S; Motta A; Migliaresi C J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):338-49. PubMed ID: 21953772 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic poly(ε-caprolactone)/poloxamine homogeneous blends prepared by supercritical foaming. de Matos MB; Puga AM; Alvarez-Lorenzo C; Concheiro A; Braga ME; de Sousa HC Int J Pharm; 2015 Feb; 479(1):11-22. PubMed ID: 25541145 [TBL] [Abstract][Full Text] [Related]
13. Poly(d,l-Lactic acid) Composite Foams Containing Phosphate Glass Particles Produced via Solid-State Foaming Using CO Shah Mohammadi M; Rezabeigi E; Bertram J; Marelli B; Gendron R; Nazhat SN; Bureau MN Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31963457 [TBL] [Abstract][Full Text] [Related]
15. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties. Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699 [TBL] [Abstract][Full Text] [Related]
16. Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO(2) foaming. Salerno A; Zeppetelli S; Di Maio E; Iannace S; Netti PA Macromol Rapid Commun; 2011 Aug; 32(15):1150-6. PubMed ID: 21648005 [TBL] [Abstract][Full Text] [Related]
17. Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone- hydroxyapatite composites. Yu H; Matthew HW; Wooley PH; Yang SY J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):541-7. PubMed ID: 18335434 [TBL] [Abstract][Full Text] [Related]
18. Development of Eco-Friendly and High-Strength Foam Sensors Based on Segregated Elastomer Composites with a Large Work Range and High Sensitivity. Li X; Wu M; Ma W; Zhou X; Chen J; Ren Q; Li S; Xiao P; Wang L; Zheng W ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38032835 [TBL] [Abstract][Full Text] [Related]
19. Physical, electrochemical and biological evaluations of spin-coated ε-polycaprolactone thin films containing alumina/graphene/carbonated hydroxyapatite/titania for tissue engineering applications. Afifi M; Ahmed MK; Fathi AM; Uskoković V Int J Pharm; 2020 Jul; 585():119502. PubMed ID: 32505577 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer-Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming. Hamidinejad M; Zhao B; Zandieh A; Moghimian N; Filleter T; Park CB ACS Appl Mater Interfaces; 2018 Sep; 10(36):30752-30761. PubMed ID: 30124039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]