These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35161208)

  • 1. Methodology to Determine Melt Pool Anomalies in Powder Bed Fusion of Metals Using a Laser Beam by Means of Process Monitoring and Sensor Data Fusion.
    Harbig J; Wenzler DL; Baehr S; Kick MK; Merschroth H; Wimmer A; Weigold M; Zaeh MF
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces.
    Ikeshoji TT; Yonehara M; Kato C; Yanaga Y; Takeshita K; Kyogoku H
    Sci Rep; 2022 Nov; 12(1):20384. PubMed ID: 36437289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Spatter in Laser Powder Bed Fusion Additive Manufacturing: In Situ Detection, Generation, Effects, and Countermeasures.
    Li Z; Li H; Yin J; Li Y; Nie Z; Li X; You D; Guan K; Duan W; Cao L; Wang D; Ke L; Liu Y; Zhao P; Wang L; Zhu K; Zhang Z; Gao L; Hao L
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process Monitoring Using Synchronized Path Infrared Thermography in PBF-LB/M.
    Höfflin D; Sauer C; Schiffler A; Hartmann J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Pragmatic Approach for Rapid, Non-Destructive Assessment of Defect Types in Laser Powder Bed Fusion Based on Melt Pool Monitoring Data.
    Engelhardt A; Wegener T; Niendorf T
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Use of Metal Sinter Powder in Laser Powder Bed Fusion Processing (PBF-LB/M).
    Bernsmann JL; Hillebrandt S; Rommerskirchen M; Bold S; Schleifenbaum JH
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion.
    Lane B; Whitenton E; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancements in Additive Manufacturing of Tantalum via the Laser Powder Bed Fusion (PBF-LB/M): A Comprehensive Review.
    Mohsan AUH; Wei D
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online Monitoring Technology of Metal Powder Bed Fusion Processes: A Review.
    Hou ZJ; Wang Q; Zhao CG; Zheng J; Tian JM; Ge XH; Liu YG
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion.
    Vallabh CKP; Zhao X
    3D Print Addit Manuf; 2023 Feb; 10(1):101-110. PubMed ID: 36998791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Monitoring of Powder Bed Fusion Homogeneity in Electron Beam Melting.
    Grasso M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing.
    Zhang Z; Zhang T; Sun C; Karna S; Yuan L
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion.
    Fisher BA; Lane B; Yeung H; Beuth J
    Manuf Lett; 2018 Jan; 15(Pt B):119-121. PubMed ID: 29888171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Laser-Based Powder Bed Fusion of Metals Process Parameters on the Formation of Defects in Al-Zn-Mg-Cu Alloy Using Path Analysis.
    Huang B; Tang H; Huang J; Jia Y; Liao L; Pang S; Zheng X; Chen Z
    Micromachines (Basel); 2024 Aug; 15(9):. PubMed ID: 39337781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways toward the Use of Non-Destructive Micromagnetic Analysis for Porosity Assessment and Process Parameter Optimization in Additive Manufacturing of 42CrMo4 (AISI 4140).
    Engelhardt A; Wegener T; Niendorf T
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Random Forest Classifier for Anomaly Detection in Laser-Powder Bed Fusion Using Optical Monitoring.
    Khan IA; Birkhofer H; Kunz D; Lukas D; Ploshikhin V
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect detection by multi-axis infrared process monitoring of laser beam directed energy deposition.
    Herzog T; Brandt M; Trinchi A; Sola A; Hagenlocher C; Molotnikov A
    Sci Rep; 2024 Feb; 14(1):3861. PubMed ID: 38360826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eddy Current Sensors Optimization for Defect Detection in Parts Fabricated by Laser Powder Bed Fusion.
    Saddoud R; Sergeeva-Chollet N; Darmon M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the influence of non-uniform gas speed on the melt pool depth in laser powder bed fusion additive manufacturing.
    Weaver JS; Schlenoff A; Deisenroth D; Moylan S
    Rapid Prototyp J; 2023 Aug; 29(8):. PubMed ID: 38486812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography.
    Kim FH; Yeung H; Garboczi EJ
    Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.