BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35161272)

  • 1. Deciphering Molecular Mechanisms Involved in Salinity Tolerance in Guar (
    Acharya BR; Sandhu D; DueƱas C; Ferreira JFS; Grover KK
    Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of SSR, SNP and InDel molecular markers from RNA-Seq data of guar (Cyamopsis tetragonoloba, L. Taub.) roots.
    Thakur O; Randhawa GS
    BMC Genomics; 2018 Dec; 19(1):951. PubMed ID: 30572838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Stress-Based De Novo Transcriptome Assembly and Annotation of Guar (
    Al-Qurainy F; Alshameri A; Gaafar AR; Khan S; Nadeem M; Alameri AA; Tarroum M; Ashraf M
    Int J Genomics; 2019; 2019():7295859. PubMed ID: 31687376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Heat-Responsive Genes in Guar [
    Alshameri A; Al-Qurainy F; Gaafar AR; Khan S; Nadeem M; Alansi S
    Int J Genomics; 2020; 2020():3126592. PubMed ID: 32656260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress.
    Hu L; Li H; Chen L; Lou Y; Amombo E; Fu J
    BMC Genomics; 2015 Aug; 16(1):575. PubMed ID: 26238595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress.
    Shi P; Gu M
    BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes.
    Peng Z; He S; Gong W; Sun J; Pan Z; Xu F; Lu Y; Du X
    BMC Genomics; 2014 Sep; 15(1):760. PubMed ID: 25189468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Differentially Expressed Drought-Responsive Genes in Guar [
    Alshameri A; Al-Qurainy F; Gaafar AR; Khan S; Nadeem M; Alansi S; Shaikhaldein HO; Salih AM
    Int J Genomics; 2020; 2020():4147615. PubMed ID: 33344629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Seq of Guar (
    Tanwar UK; Pruthi V; Randhawa GS
    Front Plant Sci; 2017; 8():91. PubMed ID: 28210265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions.
    Hiz MC; Canher B; Niron H; Turet M
    PLoS One; 2014; 9(3):e92598. PubMed ID: 24651267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought Stress Response in Guar (
    Vishnyakova MA; Frolova N; Frolov A
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Key Metabolic Pathways and Biomarkers Underlying Flowering Time of Guar (
    Grigoreva E; Tkachenko A; Arkhimandritova S; Beatovic A; Ulianich P; Volkov V; Karzhaev D; Ben C; Gentzbittel L; Potokina E
    Genes (Basel); 2021 Jun; 12(7):. PubMed ID: 34206279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key metabolites associated with the onset of flowering of guar genotypes (Cyamopsis tetragonoloba (L.) Taub).
    Arkhimandritova S; Shavarda A; Potokina E
    BMC Plant Biol; 2020 Oct; 20(Suppl 1):291. PubMed ID: 33050886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa.
    Kaundal R; Duhan N; Acharya BR; Pudussery MV; Ferreira JFS; Suarez DL; Sandhu D
    Sci Rep; 2021 Mar; 11(1):5210. PubMed ID: 33664362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis of hexaploid hulless oat in response to salinity stress.
    Wu B; Hu Y; Huo P; Zhang Q; Chen X; Zhang Z
    PLoS One; 2017; 12(2):e0171451. PubMed ID: 28192458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense.
    Kashyap SP; Prasanna HC; Kumari N; Mishra P; Singh B
    Sci Rep; 2020 Sep; 10(1):15835. PubMed ID: 32985535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endophytic bacilli from Cyamopsis tetragonoloba (L.) Taub. induces plant growth and drought tolerance.
    Umrao V; Yadav S; Semwal P; Misra S; Mishra SK; Chauhan PS; Shirke PA
    Int Microbiol; 2024 Mar; ():. PubMed ID: 38472714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome revealed the molecular mechanism of Glycyrrhiza inflata root to maintain growth and development, absorb and distribute ions under salt stress.
    Xu Y; Lu JH; Zhang JD; Liu DK; Wang Y; Niu QD; Huang DD
    BMC Plant Biol; 2021 Dec; 21(1):599. PubMed ID: 34915868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptome and metabolome profiling in the maturing seeds of contrasting cluster bean (Cyamopsis tetragonoloba L. Taub) cultivars identified key molecular variations leading to increased gum accumulation.
    Rajaprakasam S; Rahman H; Karunagaran S; Bapu K; J R ; Kulandivelu G; Kambale R; Ramanathan V; Muthurajan R
    Gene; 2021 Jul; 791():145727. PubMed ID: 34010707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the alfalfa root transcriptome in response to salinity stress.
    Postnikova OA; Shao J; Nemchinov LG
    Plant Cell Physiol; 2013 Jul; 54(7):1041-55. PubMed ID: 23592587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.