These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35161390)

  • 21. The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression.
    Neagoe I; Stauber T; Fidzinski P; Bergsdorf EY; Jentsch TJ
    J Biol Chem; 2010 Jul; 285(28):21689-97. PubMed ID: 20466723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the conformation of a conserved glutamic acid within the Cl
    Vien M; Basilio D; Leisle L; Accardi A
    J Gen Physiol; 2017 Apr; 149(4):523-529. PubMed ID: 28246117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two splice variants derived from a Drosophila melanogaster candidate ClC gene generate ClC-2-type Cl- channels.
    Flores CA; Niemeyer MI; SepĂșlveda FV; Cid LP
    Mol Membr Biol; 2006; 23(2):149-56. PubMed ID: 16754358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exterior site occupancy infers chloride-induced proton gating in a prokaryotic homolog of the ClC chloride channel.
    Bostick DL; Berkowitz ML
    Biophys J; 2004 Sep; 87(3):1686-96. PubMed ID: 15345547
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Liu W; Feng J; Ma W; Zhou Y; Ma Z
    Front Plant Sci; 2021; 12():765173. PubMed ID: 34721491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively.
    Marmagne A; Vinauger-Douard M; Monachello D; de Longevialle AF; Charon C; Allot M; Rappaport F; Wollman FA; Barbier-Brygoo H; Ephritikhine G
    J Exp Bot; 2007; 58(12):3385-93. PubMed ID: 17872921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion-exchange properties of cell walls of Spinacia oleracea L. roots under different environmental salt conditions.
    Meychik NR; Nikolaeva YI; Yermakov IP
    Biochemistry (Mosc); 2006 Jul; 71(7):781-9. PubMed ID: 16903833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular cloning and characterization of a vacuolar H+ -pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis.
    Guo S; Yin H; Zhang X; Zhao F; Li P; Chen S; Zhao Y; Zhang H
    Plant Mol Biol; 2006 Jan; 60(1):41-50. PubMed ID: 16463098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salt-Enhanced Reproductive Development of
    Guo J; Dong X; Han G; Wang B
    Front Plant Sci; 2019; 10():333. PubMed ID: 30984214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean.
    Wei P; Wang L; Liu A; Yu B; Lam HM
    Front Plant Sci; 2016; 7():1082. PubMed ID: 27504114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis for ion conduction and gating in ClC chloride channels.
    Dutzler R
    FEBS Lett; 2004 Apr; 564(3):229-33. PubMed ID: 15111101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-Wide Identification and Functional Characterization of the Chloride Channel TaCLC Gene Family in Wheat (
    Mao P; Run Y; Wang H; Han C; Zhang L; Zhan K; Xu H; Cheng X
    Front Genet; 2022; 13():846795. PubMed ID: 35368658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The chloride channels: Silently serving the plants.
    Subba A; Tomar S; Pareek A; Singla-Pareek SL
    Physiol Plant; 2021 Apr; 171(4):688-702. PubMed ID: 33034380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies.
    Poroca DR; Pelis RM; Chappe VM
    Front Pharmacol; 2017; 8():151. PubMed ID: 28386229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption.
    Hechenberger M; Schwappach B; Fischer WN; Frommer WB; Jentsch TJ; Steinmeyer K
    J Biol Chem; 1996 Dec; 271(52):33632-8. PubMed ID: 8969232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease.
    Jentsch TJ; Pusch M
    Physiol Rev; 2018 Jul; 98(3):1493-1590. PubMed ID: 29845874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons.
    Niemeyer MI; Cid LP; Yusef YR; Briones R; SepĂșlveda FV
    J Physiol; 2009 Apr; 587(Pt 7):1387-400. PubMed ID: 19153159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p.
    Schwappach B; Stobrawa S; Hechenberger M; Steinmeyer K; Jentsch TJ
    J Biol Chem; 1998 Jun; 273(24):15110-8. PubMed ID: 9614122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unique structure and function of chloride transporting CLC proteins.
    Pusch M; Jentsch TJ
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):49-57. PubMed ID: 15816171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.