BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35161437)

  • 1. Combining Hyperspectral Reflectance Indices and Multivariate Analysis to Estimate Different Units of Chlorophyll Content of Spring Wheat under Salinity Conditions.
    El-Hendawy S; Dewir YH; Elsayed S; Schmidhalter U; Al-Gaadi K; Tola E; Refay Y; Tahir MU; Hassan WM
    Plants (Basel); 2022 Feb; 11(3):. PubMed ID: 35161437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Hyperspectral Reflectance Sensing for Assessing Growth and Chlorophyll Content of Spring Wheat Grown under Simulated Saline Field Conditions.
    El-Hendawy S; Elsayed S; Al-Suhaibani N; Alotaibi M; Tahir MU; Mubushar M; Attia A; Hassan WM
    Plants (Basel); 2021 Jan; 10(1):. PubMed ID: 33418974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of optimized hyperspectral reflectance indices and partial least squares regression for estimating the chlorophyll fluorescence and grain yield of wheat grown in simulated saline field conditions.
    El-Hendawy S; Al-Suhaibani N; Elsayed S; Alotaibi M; Hassan W; Schmidhalter U
    Plant Physiol Biochem; 2019 Nov; 144():300-311. PubMed ID: 31605962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Performance of Spectral Reflectance Indices and Multivariate Modeling for Assessing Agronomic Parameters in Advanced Spring Wheat Lines Under Two Contrasting Irrigation Regimes.
    El-Hendawy SE; Alotaibi M; Al-Suhaibani N; Al-Gaadi K; Hassan W; Dewir YH; Emam MAE; Elsayed S; Schmidhalter U
    Front Plant Sci; 2019; 10():1537. PubMed ID: 31850029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Strategies for the Retrieval of Leaf-Chlorophyll Dynamics: Model Choice, Sequential Versus Retraining Learning, and Hyperspectral Predictors.
    Angel Y; McCabe MF
    Front Plant Sci; 2022; 13():722442. PubMed ID: 35360313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential Use of Hyperspectral Reflectance as a High-Throughput Nondestructive Phenotyping Tool for Assessing Salt Tolerance in Advanced Spring Wheat Lines under Field Conditions.
    El-Hendawy S; Al-Suhaibani N; Mubushar M; Tahir MU; Refay Y; Tola E
    Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Corn Canopy Chlorophyll Content Using Derivative Spectra in the O
    Zhang X; He Y; Wang C; Xu F; Li X; Tan C; Chen D; Wang G; Shi L
    Front Plant Sci; 2019; 10():1047. PubMed ID: 31507626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of Radiometric Ground-Based Data and High-Resolution QuickBird Imagery with Multivariate Modeling to Estimate Maize Traits in the Nile Delta of Egypt.
    Elmetwalli AH; Tyler AN; Moghanm FS; Alamri SAM; Eid EM; Elsayed S
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34204099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral reflectance and agro-physiological traits for field identification of salt-tolerant wheat genotypes using the genotype by yield*trait biplot technique.
    Elfanah AMS; Darwish MA; Selim AI; Elmoselhy OMA; Ali AM; El-Maghraby MA; Abdelhamid MT
    Front Plant Sci; 2023; 14():1165113. PubMed ID: 37600199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating growth and photosynthetic properties of wheat grown in simulated saline field conditions using hyperspectral reflectance sensing and multivariate analysis.
    El-Hendawy S; Al-Suhaibani N; Alotaibi M; Hassan W; Elsayed S; Tahir MU; Mohamed AI; Schmidhalter U
    Sci Rep; 2019 Nov; 9(1):16473. PubMed ID: 31712701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopy based novel spectral indices, PCA- and PLSR-coupled machine learning models for salinity stress phenotyping of rice.
    Das B; Manohara KK; Mahajan GR; Sahoo RN
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117983. PubMed ID: 31896051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-destructive determination of maize leaf and canopy chlorophyll content.
    Ciganda V; Gitelson A; Schepers J
    J Plant Physiol; 2009 Jan; 166(2):157-67. PubMed ID: 18541334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing Wheat Traits by Spectral Reflectance: Do We Really Need to Focus on Predicted Trait-Values or Directly Identify the Elite Genotypes Group?
    Garriga M; Romero-Bravo S; Estrada F; Escobar A; Matus IA; Del Pozo A; Astudillo CA; Lobos GA
    Front Plant Sci; 2017; 8():280. PubMed ID: 28337210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different Responses of Various Chlorophyll Meters to Increasing Nitrogen Supply in Sweet Pepper.
    Padilla FM; de Souza R; Peña-Fleitas MT; Gallardo M; Giménez C; Thompson RB
    Front Plant Sci; 2018; 9():1752. PubMed ID: 30542364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput analysis of leaf physiological and chemical traits with VIS-NIR-SWIR spectroscopy: a case study with a maize diversity panel.
    Ge Y; Atefi A; Zhang H; Miao C; Ramamurthy RK; Sigmon B; Yang J; Schnable JC
    Plant Methods; 2019; 15():66. PubMed ID: 31391863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining biophysical parameters, spectral indices and multivariate hyperspectral models for estimating yield and water productivity of spring wheat across different agronomic practices.
    El-Hendawy S; Al-Suhaibani N; Elsayed S; Refay Y; Alotaibi M; Dewir YH; Hassan W; Schmidhalter U
    PLoS One; 2019; 14(3):e0212294. PubMed ID: 30840631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust spectral angle index for remotely assessing soybean canopy chlorophyll content in different growing stages.
    Yue J; Feng H; Tian Q; Zhou C
    Plant Methods; 2020; 16():104. PubMed ID: 32765637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Hyperspectral monitoring on proline content in winter wheat under water stress].
    Xie Y; Song J; Liu M; Meng W; Feng M; Wang C; Yang W; Qiao X; Yang C
    Ying Yong Sheng Tai Xue Bao; 2023 Feb; 34(2):463-470. PubMed ID: 36803724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity.
    Meacham-Hensold K; Montes CM; Wu J; Guan K; Fu P; Ainsworth EA; Pederson T; Moore CE; Brown KL; Raines C; Bernacchi CJ
    Remote Sens Environ; 2019 Sep; 231():111176. PubMed ID: 31534277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.