These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35161473)

  • 1. fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees.
    Sattar NY; Kausar Z; Usama SA; Farooq U; Shah MF; Muhammad S; Khan R; Badran M
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
    Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G
    J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion.
    Ahmed MH; Chai J; Shimoda S; Hayashibe M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Control of 2DOF Upper-Limb Prosthesis With Body Compensations-Based Control: A Multiple Cases Study.
    Legrand M; Marchand C; Richer F; Touillet A; Martinet N; Paysant J; Morel G; Jarrasse N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1745-1754. PubMed ID: 35749322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based framework for real-time upper limb motion intention classification using combined bio-signals.
    Syed AU; Sattar NY; Ganiyu I; Sanjay C; Alkhatib S; Salah B
    Front Neurorobot; 2023; 17():1174613. PubMed ID: 37575360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model predictive controller-based spatiotemporal path tracking method for transhumeral prostheses.
    Dannangoda Gamage KM; Gopura RARC; Amarasinghe YWR; Mann GKI
    Int J Med Robot; 2019 Jun; 15(3):e1980. PubMed ID: 30588729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?
    Merad M; de Montalivet É; Touillet A; Martinet N; Roby-Brami A; Jarrassé N
    Front Neurorobot; 2018; 12():1. PubMed ID: 29456499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Control of a Transhumeral Prosthesis with EEG Signals.
    Bandara DSV; Arata J; Kiguchi K
    Bioengineering (Basel); 2018 Mar; 5(2):. PubMed ID: 29565293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of arm swing on spatiotemporal characteristics of gait in unilateral transhumeral amputees.
    Topuz S; Kirdi E; Yalcin AI; Ulger O; Keklicek H; Sener G
    Gait Posture; 2019 Feb; 68():95-100. PubMed ID: 30469106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attachment of upper arm prostheses with a subcutaneous osseointegrated implant in transhumeral amputees.
    Salminger S; Gradischar A; Skiera R; Roche AD; Sturma A; Hofer C; Aszmann OC
    Prosthet Orthot Int; 2018 Feb; 42(1):93-100. PubMed ID: 27638013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. fNIRS-based Neurorobotic Interface for gait rehabilitation.
    Khan RA; Naseer N; Qureshi NK; Noori FM; Nazeer H; Khan MU
    J Neuroeng Rehabil; 2018 Feb; 15(1):7. PubMed ID: 29402310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loads on Transhumeral Amputees Using Osseointegrated Prostheses.
    Stenlund P; Kulbacka-Ortiz K; Jönsson S; Brånemark R
    Ann Biomed Eng; 2019 Jun; 47(6):1369-1377. PubMed ID: 30859433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of Phantom Finger, Hand, Wrist, and Elbow Voluntary Gestures in Transhumeral Amputees With sEMG.
    Jarrasse N; Nicol C; Touillet A; Richer F; Martinet N; Paysant J; de Graaf JB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):68-77. PubMed ID: 27164596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoring natural upper limb movement through a wrist prosthetic module for partial hand amputees.
    Choi S; Cho W; Kim K
    J Neuroeng Rehabil; 2023 Oct; 20(1):135. PubMed ID: 37798778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees Without Surgical Reinnervation: A Preliminary Study.
    Jarrassé N; de Montalivet E; Richer F; Nicol C; Touillet A; Martinet N; Paysant J; de Graaf JB
    Front Bioeng Biotechnol; 2018; 6():164. PubMed ID: 30555823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HD-sEMG Signal Denoising Method for Improved Classification Performance in Transhumeral Amputees Pros thesis Control.
    Asogbon MG; Williams Samuel O; Ejay E; Jarrah YA; Chen S; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():857-861. PubMed ID: 34891425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures.
    Lyons KR; Joshi SS; Joshi SS; Lyons KR
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. User intent prediction with a scaled conjugate gradient trained artificial neural network for lower limb amputees using a powered prosthesis.
    Woodward RB; Spanias JA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6405-6408. PubMed ID: 28325033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosignal-based transferable attention Bi-ConvGRU deep network for hand-gesture recognition towards online upper-limb prosthesis control.
    Xie B; Meng J; Li B; Harland A
    Comput Methods Programs Biomed; 2022 Sep; 224():106999. PubMed ID: 35841852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transhumeral Arm Reaching Motion Prediction through Deep Reinforcement Learning-Based Synthetic Motion Cloning.
    Ahmed MH; Kutsuzawa K; Hayashibe M
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.