These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35161473)

  • 21. An integrated deep learning model for motor intention recognition of multi-class EEG Signals in upper limb amputees.
    Idowu OP; Ilesanmi AE; Li X; Samuel OW; Fang P; Li G
    Comput Methods Programs Biomed; 2021 Jul; 206():106121. PubMed ID: 33957375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stacking classifier to improve the classification of shoulder motion in transhumeral amputees.
    Kaur A
    Biomed Tech (Berl); 2022 Apr; 67(2):105-117. PubMed ID: 35363448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted reinnervation for transhumeral amputees: current surgical technique and update on results.
    Dumanian GA; Ko JH; O'Shaughnessy KD; Kim PS; Wilson CJ; Kuiken TA
    Plast Reconstr Surg; 2009 Sep; 124(3):863-869. PubMed ID: 19730305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves.
    Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA
    J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time classification of shoulder girdle motions for multifunctional prosthetic hand control: A preliminary study.
    Sharba GK; Wali MK; Ai-Timemy AH
    Int J Artif Organs; 2019 Sep; 42(9):508-515. PubMed ID: 31117860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electromyogram-based neural network control of transhumeral prostheses.
    Pulliam CL; Lambrecht JM; Kirsch RF
    J Rehabil Res Dev; 2011; 48(6):739-54. PubMed ID: 21938659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial.
    Hargrove LJ; Miller LA; Turner K; Kuiken TA
    Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. User surveys support designing a prosthetic wrist that incorporates the Dart Thrower's Motion.
    Davidson M; Bodine C; Weir RFF
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):312-315. PubMed ID: 29514521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A bioelectric neural interface towards intuitive prosthetic control for amputees.
    Nguyen AT; Xu J; Jiang M; Luu DK; Wu T; Tam WK; Zhao W; Drealan MW; Overstreet CK; Zhao Q; Cheng J; Keefer EW; Yang Z
    J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33091891
    [No Abstract]   [Full Text] [Related]  

  • 31. Fascicle-Specific Targeting of Longitudinal Intrafascicular Electrodes for Motor and Sensory Restoration in Upper-Limb Amputees.
    Cheng J; Yang Z; Overstreet CK; Keefer E
    Hand Clin; 2021 Aug; 37(3):401-414. PubMed ID: 34253313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osseointegration amputation prostheses on the upper limbs: methods, prosthetics and rehabilitation.
    Jönsson S; Caine-Winterberger K; Brånemark R
    Prosthet Orthot Int; 2011 Jun; 35(2):190-200. PubMed ID: 21697201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EMG pattern recognition control of multifunctional prostheses by transradial amputees.
    Li G; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6914-7. PubMed ID: 19964455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brief activity performance measure for upper limb amputees: BAM-ULA.
    Resnik L; Borgia M; Acluche F
    Prosthet Orthot Int; 2018 Feb; 42(1):75-83. PubMed ID: 28091278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees.
    Teh Y; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1605-1613. PubMed ID: 32396094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motion pattern analysis for evaluation and design of a prosthetic hook.
    Gilad I
    Arch Phys Med Rehabil; 1985 Jun; 66(6):399-402. PubMed ID: 4004541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved hand prostheses control for transradial amputees based on hybrid of voice recognition and electromyography.
    Alkhafaf OS; Wali MK; Al-Timemy AH
    Int J Artif Organs; 2021 Jul; 44(7):509-517. PubMed ID: 33287634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task.
    Kaliki RR; Davoodi R; Loeb GE
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):792-802. PubMed ID: 22287229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees.
    Vu PP; Vaskov AK; Irwin ZT; Henning PT; Lueders DR; Laidlaw AT; Davis AJ; Nu CS; Gates DH; Gillespie RB; Kemp SWP; Kung TA; Chestek CA; Cederna PS
    Sci Transl Med; 2020 Mar; 12(533):. PubMed ID: 32132217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyzing at-home prosthesis use in unilateral upper-limb amputees to inform treatment & device design.
    Spiers AJ; Resnik L; Dollar AM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1273-1280. PubMed ID: 28813996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.