These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35161487)

  • 1. In-Situ Li-Ion Pouch Cell Diagnostics Utilising Plasmonic Based Optical Fibre Sensors.
    Gardner C; Langhammer E; Du W; Brett DJL; Shearing PR; Roberts AJ; Amietszajew T
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable production of high-performing woven lithium-ion fibre batteries.
    He J; Lu C; Jiang H; Han F; Shi X; Wu J; Wang L; Chen T; Wang J; Zhang Y; Yang H; Zhang G; Sun X; Wang B; Chen P; Wang Y; Xia Y; Peng H
    Nature; 2021 Sep; 597(7874):57-63. PubMed ID: 34471277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors.
    Chen D; Zhao Q; Zheng Y; Xu Y; Chen Y; Ni J; Zhao Y
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focused Ion Beam Fabrication of LiPON-based Solid-state Lithium-ion Nanobatteries for In Situ Testing.
    Lee JZ; Wynn TA; Meng YS; Santhanagopalan D
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New CuO-Fe
    Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J
    ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes.
    Miele E; Dose WM; Manyakin I; Frosz MH; Ruff Z; De Volder MFL; Grey CP; Baumberg JJ; Euser TG
    Nat Commun; 2022 Mar; 13(1):1651. PubMed ID: 35347137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ visualization of multicomponents coevolution in a battery pouch cell.
    Zan G; Qian G; Gul S; Li J; Matusik K; Wang Y; Lewis S; Yun W; Pianetta P; Vine DJ; Li L; Liu Y
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2203199119. PubMed ID: 35858350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turning an environmental problem into an opportunity: potential use of biochar derived from a harmful marine biomass named Cladophora glomerata as anode electrode for Li-ion batteries.
    Salimi P; Javadian S; Norouzi O; Gharibi H
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27974-27984. PubMed ID: 28990143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-electrode Coin Cell Preparation and Electrodeposition Analytics for Lithium-ion Batteries.
    Minter RD; Juarez-Robles D; Fear C; Barsukov Y; Mukherjee PP
    J Vis Exp; 2018 May; (135):. PubMed ID: 29889204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode.
    Hernández-Rentero C; Marangon V; Olivares-Marín M; Gómez-Serrano V; Caballero Á; Morales J; Hassoun J
    J Colloid Interface Sci; 2020 Aug; 573():396-408. PubMed ID: 32304949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crushing of large Li-ion battery cells.
    Wuschke L; Jäckel HG; Leißner T; Peuker UA
    Waste Manag; 2019 Feb; 85():317-326. PubMed ID: 30803586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.
    Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G
    Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Lithium Ion Diffusion of Graphite Anode by the Galvanostatic Intermittent Titration Technique.
    Park JH; Yoon H; Cho Y; Yoo CY
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.
    Liu D; Yang Z; Wang P; Li F; Wang D; He D
    Nanoscale; 2013 Mar; 5(5):1917-21. PubMed ID: 23354412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.