These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35161580)

  • 1. CNN-Based Hand Grasping Prediction and Control via Postural Synergy Basis Extraction.
    Liu Q; Li M; Yin C; Qian G; Meng W; Ai Q; Hu J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multimodal Intention Detection Sensor Suite for Shared Autonomy of Upper-Limb Robotic Prostheses.
    Gardner M; Mancero Castillo CS; Wilson S; Farina D; Burdet E; Khoo BC; Atashzar SF; Vaidyanathan R
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial neural network EMG classifier for functional hand grasp movements prediction.
    Gandolla M; Ferrante S; Ferrigno G; Baldassini D; Molteni F; Guanziroli E; Cotti Cottini M; Seneci C; Pedrocchi A
    J Int Med Res; 2017 Dec; 45(6):1831-1847. PubMed ID: 27677300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCA and deep learning based myoelectric grasping control of a prosthetic hand.
    Li C; Ren J; Huang H; Wang B; Zhu Y; Hu H
    Biomed Eng Online; 2018 Aug; 17(1):107. PubMed ID: 30081927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upper-Limb Electromyogram Classification of Reaching-to-Grasping Tasks Based on Convolutional Neural Networks for Control of a Prosthetic Hand.
    Kim KT; Park S; Lim TH; Lee SJ
    Front Neurosci; 2021; 15():733359. PubMed ID: 34712114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the grasping intention from electromyography during reaching motions.
    Batzianoulis I; Krausz NE; Simon AM; Hargrove L; Billard A
    J Neuroeng Rehabil; 2018 Jun; 15(1):57. PubMed ID: 29940991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Vision-Driven Collaborative Robotic Grasping System Tele-Operated by Surface Electromyography.
    Úbeda A; Zapata-Impata BS; Puente ST; Gil P; Candelas F; Torres F
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning Grasp Configuration Through Object-Specific Hand Primitives for Posture Planning of Anthropomorphic Hands.
    Liu B; Jiang L; Fan S; Dai J
    Front Neurorobot; 2021; 15():740262. PubMed ID: 34603004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of Upper Limb Action Intention Based on IMU.
    Cui JW; Li ZG; Du H; Yan BY; Lu PD
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling and simulation of the hand grasping using neural networks.
    Taha Z; Brown R; Wright D
    Med Eng Phys; 1997 Sep; 19(6):536-8. PubMed ID: 9394901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperation of electrically stimulated muscle and pneumatic muscle to realize RUPERT bi-directional motion for grasping.
    Xikai Tu ; Jiping He ; Yue Wen ; Jian Huang ; Xinhan Huang ; Hailong Huang ; Meng Guo ; Yong Yuan
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4103-6. PubMed ID: 25570894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lw-CNN-Based Myoelectric Signal Recognition and Real-Time Control of Robotic Arm for Upper-Limb Rehabilitation.
    Guo B; Ma Y; Yang J; Wang Z; Zhang X
    Comput Intell Neurosci; 2020; 2020():8846021. PubMed ID: 33456452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses.
    Rivera P; Valarezo Añazco E; Kim TS
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Synergic pattern analysis of upper limb grasping movements].
    Yang Y; Wang R; Hao Z; Jin D; Xu W; Zhang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):910-3. PubMed ID: 16294719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regression convolutional neural network for improved simultaneous EMG control.
    Ameri A; Akhaee MA; Scheme E; Englehart K
    J Neural Eng; 2019 Jun; 16(3):036015. PubMed ID: 30849774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots.
    Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M
    J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GR-ConvNet v2: A Real-Time Multi-Grasp Detection Network for Robotic Grasping.
    Kumra S; Joshi S; Sahin F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.