BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35161603)

  • 1. AC-Electroosmosis-Assisted Surface Plasmon Resonance Sensing for Enhancing Protein Signals with a Simple Kretschmann Configuration.
    Terao K; Kondo S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoretic cell trapping for improved surface plasmon resonance imaging sensing.
    Costella M; Avenas Q; Frénéa-Robin M; Marchalot J; Bevilacqua P; Charette PG; Canva M
    Electrophoresis; 2019 May; 40(10):1417-1425. PubMed ID: 30830963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and Sensitive Detection by Combining Electric Field Effects and Surface Plasmon Resonance: A Theoretical Study.
    Qiu Q; Xu Y
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal enhancement of protein binding by electrodeposited gold nanostructures for applications in Kretschmann-type SPR sensors.
    Nagase N; Terao K; Miyanishi N; Tamai K; Uchiyama N; Suzuki T; Takao H; Shimokawa F; Oohira F
    Analyst; 2012 Nov; 137(21):5034-40. PubMed ID: 23000888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor.
    Li L; Liang Y; Guang J; Cui W; Zhang X; Masson JF; Peng W
    Opt Express; 2017 Oct; 25(22):26950-26957. PubMed ID: 29092176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AC Electroosmosis-Enhanced Nanoplasmofluidic Detection of Ultralow-Concentration Cytokine.
    Song Y; Chen P; Chung MT; Nidetz R; Park Y; Liu Z; McHugh W; Cornell TT; Fu J; Kurabayashi K
    Nano Lett; 2017 Apr; 17(4):2374-2380. PubMed ID: 28296413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures.
    Wang Z; Cheng Z; Singh V; Zheng Z; Wang Y; Li S; Song L; Zhu J
    Anal Chem; 2014 Feb; 86(3):1430-6. PubMed ID: 24372308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reusable surface plasmon resonance biosensor chip for the detection of H1N1 influenza virus.
    Yoo H; Shin J; Sim J; Cho H; Hong S
    Biosens Bioelectron; 2020 Nov; 168():112561. PubMed ID: 32877782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors.
    Ko S; Park TJ; Kim HS; Kim JH; Cho YJ
    Biosens Bioelectron; 2009 Apr; 24(8):2592-7. PubMed ID: 19243930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optoelectrofluidic enhanced immunoreaction based on optically-induced dynamic AC electroosmosis.
    Han D; Park JK
    Lab Chip; 2016 Apr; 16(7):1189-96. PubMed ID: 26926571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of immunoarrays using a gold grating-based dual mode surface plasmon-coupled emission (SPCE) sensor chip.
    Yuk JS; Gibson GN; Rice JM; Guignon EF; Lynes MA
    Analyst; 2012 Jun; 137(11):2574-81. PubMed ID: 22498719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilizing topoisomerase I on a surface plasmon resonance biosensor chip to screen for inhibitors.
    Tsai HP; Lin LW; Lai ZY; Wu JY; Chen CE; Hwang J; Chen CS; Lin CM
    J Biomed Sci; 2010 Jun; 17(1):49. PubMed ID: 20565729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface characterization and efficiency of a matrix-free and flat carboxylated gold sensor chip for surface plasmon resonance (SPR).
    Roussille L; Brotons G; Ballut L; Louarn G; Ausserré D; Ricard-Blum S
    Anal Bioanal Chem; 2011 Sep; 401(5):1601-17. PubMed ID: 21755270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing.
    Arora P; Talker E; Mazurski N; Levy U
    Sci Rep; 2018 Jun; 8(1):9060. PubMed ID: 29899340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive and selective surface plasmon resonance sensor for detection of sub-ppb levels of benzo[a]pyrene by indirect competitive immunoreaction method.
    Miura N; Sasaki M; Gobi KV; Kataoka C; Shoyama Y
    Biosens Bioelectron; 2003 Jul; 18(7):953-9. PubMed ID: 12713919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles.
    Matsui J; Akamatsu K; Hara N; Miyoshi D; Nawafune H; Tamaki K; Sugimoto N
    Anal Chem; 2005 Jul; 77(13):4282-5. PubMed ID: 15987138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple protein-patterned surface plasmon resonance biochip for the detection of human immunoglobulin-G.
    Kashyap R; Boro PR; Yasmin R; Nath J; Sonowal D; Doley R; Mondal B
    J Biophotonics; 2023 May; 16(5):e202200263. PubMed ID: 36683194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.
    Gobi KV; Matsumoto K; Toko K; Ikezaki H; Miura N
    Anal Bioanal Chem; 2007 Apr; 387(8):2727-35. PubMed ID: 17318518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bandgap-assisted surface-plasmon sensing.
    Benahmed AJ; Ho CM
    Appl Opt; 2007 Jun; 46(16):3369-75. PubMed ID: 17514295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array.
    Luo Q; Yu N; Shi C; Wang X; Wu J
    Talanta; 2016 Dec; 161():797-803. PubMed ID: 27769483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.