These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35161651)

  • 1. Kinetic Electromagnetic Energy Harvester for Railway Applications-Development and Test with Wireless Sensor.
    Hadas Z; Rubes O; Ksica F; Chalupa J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Vibration Energy Harvester and Power Management Solution for Battery-Free Operation of Wireless Sensor Nodes.
    Rodriguez JC; Nico V; Punch J
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review on Rail Defect Detection Systems Based on Wireless Sensors.
    Zhao Y; Liu Z; Yi D; Yu X; Sha X; Li L; Sun H; Zhan Z; Li WJ
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of a Novel Tunable Piezoelectric Vibration Energy Harvester.
    Raghavan S; Gupta R; Sharma L
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.
    Chung TK; Yeh PC; Lee H; Lin CM; Tseng CY; Lo WT; Wang CM; Wang WC; Tu CJ; Tasi PY; Chang JW
    Sensors (Basel); 2016 Feb; 16(3):269. PubMed ID: 26907297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green Energy Harvester from Vibrations Based on Bacterial Cellulose.
    Trigona C; Graziani S; Di Pasquale G; Pollicino A; Nisi R; Licciulli A
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation and Experimental Study of a Piezoelectric Stack Energy Harvester for Railway Track Vibrations.
    Min Z; Hou C; Sui G; Shan X; Xie T
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband Vibration-Based Energy Harvesting for Wireless Sensor Applications Using Frequency Upconversion.
    Li J; Ouro-Koura H; Arnow H; Nowbahari A; Galarza M; Obispo M; Tong X; Azadmehr M; Halvorsen E; Hella MM; Tichy JA; Borca-Tasciuc DA
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimentally Verified Analytical Models of Piezoelectric Cantilevers in Different Design Configurations.
    Machu Z; Rubes O; Sevecek O; Hadas Z
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Study on the Energy-Harvesting Device with a Magnetic Spring for Improved Durability in High-Speed Trains.
    Kim J
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of vibration energy harvesting in rail transportation field.
    Qi L; Pan H; Pan Y; Luo D; Yan J; Zhang Z
    iScience; 2022 Mar; 25(3):103849. PubMed ID: 35198908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study on the Improvement of the Durability of an Energy Harvesting Device with a Mechanical Stopper and a Performance Evaluation for Its Application in Trains.
    Kim J
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32825051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Two-Degree-of-Freedom Mechanical Oscillator for Multidirectional Vibration Energy Harvesting to Power Wireless Sensor Nodes.
    Shabanalinezhad H; Svelto C; Malcovati P; Gatti G
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless Technologies for Energy Harvesting and Transmission for Ambient Self-Powered Systems.
    Jiang C; Li X; Lian SWM; Ying Y; Ho JS; Ping J
    ACS Nano; 2021 Jun; 15(6):9328-9354. PubMed ID: 34124880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-Low Frequency Eccentric Pendulum-Based Electromagnetic Vibrational Energy Harvester.
    Li M; Deng H; Zhang Y; Li K; Huang S; Liu X
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33207547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless sensing in high-speed railway turnouts with battery-free materials and devices.
    Sun Y; Yan Y; Tian S; Liu G; Wu F; Wang P; Gao M
    iScience; 2024 Jan; 27(1):108663. PubMed ID: 38155782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A vibration energy harvester for freight train track self-powered application.
    Liu G; Fang Z; Zhang Z; Tan X; Dai C; Wu X; Jin Z; Li D
    iScience; 2022 Oct; 25(10):105155. PubMed ID: 36204274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributed Review: Recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications.
    Khan FU; Khattak MU
    Rev Sci Instrum; 2016 Feb; 87(2):021501. PubMed ID: 26931827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.