These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35161685)

  • 1. Exploring Physiological Signal Responses to Traffic-Related Stress in Simulated Driving.
    Zontone P; Affanni A; Piras A; Rinaldo R
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Car Driver's Sympathetic Reaction Detection Through Electrodermal Activity and Electrocardiogram Measurements.
    Zontone P; Affanni A; Bernardini R; Piras A; Rinaldo R; Formaggia F; Minen D; Minen M; Savorgnan C
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3413-3424. PubMed ID: 32305889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress Evaluation in Simulated Autonomous and Manual Driving through the Analysis of Skin Potential Response and Electrocardiogram Signals.
    Zontone P; Affanni A; Bernardini R; Del Linz L; Piras A; Rinaldo R
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32354062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driver Attention Assessment Using Physiological Measures from EEG, ECG, and EDA Signals.
    Aminosharieh Najafi T; Affanni A; Rinaldo R; Zontone P
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Preliminary Study on Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning.
    Hossain MB; Posada-Quintero HF; Kong Y; McNaboe R; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6920-6923. PubMed ID: 34892695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel machine learning-enabled framework for instantaneous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals.
    Zhang Q; Zhou D; Zeng X
    Physiol Meas; 2016 Nov; 37(11):1945-1967. PubMed ID: 27681602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heart rate variability (HRV) and muscular system activity (EMG) in cases of crash threat during simulated driving of a passenger car.
    Zużewicz K; Roman-Liu D; Konarska M; Bartuzi P; Matusiak K; Korczak D; Lozia Z; Guzek M
    Int J Occup Med Environ Health; 2013 Oct; 26(5):710-23. PubMed ID: 24317871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Event-related driver stress detection with smartphones among young novice drivers.
    Zhou X; Ma L; Zhang W
    Ergonomics; 2022 Aug; 65(8):1154-1172. PubMed ID: 34919031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traffic calming along rural highways crossing small urban communities: driving simulator experiment.
    Galante F; Mauriello F; Montella A; Pernetti M; Aria M; D'Ambrosio A
    Accid Anal Prev; 2010 Nov; 42(6):1585-94. PubMed ID: 20728607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method to extract realistic artifacts from electrocardiogram recordings for robust algorithm testing.
    Galeotti L; Scully CG
    J Electrocardiol; 2018; 51(6S):S56-S60. PubMed ID: 30180996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Algorithm for Movement Artifact Removal in ECG Signals Acquired from Wearable Systems Applied to Horses.
    Lanata A; Guidi A; Baragli P; Valenza G; Scilingo EP
    PLoS One; 2015; 10(10):e0140783. PubMed ID: 26484686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Future Driving Risk of Crash-Involved Drivers Based on a Systematic Machine Learning Framework.
    Wang C; Liu L; Xu C; Lv W
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30691063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-Related Electrodermal Response to Stress: Results From a Realistic Driving Simulator Scenario.
    Daviaux Y; Bonhomme E; Ivers H; de Sevin É; Micoulaud-Franchi JA; Bioulac S; Morin CM; Philip P; Altena E
    Hum Factors; 2020 Feb; 62(1):138-151. PubMed ID: 31050918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual saliency detection approach for long-term ECG analysis.
    Mukhopadhyay SK; Krishnan S
    Comput Methods Programs Biomed; 2022 Jan; 213():106518. PubMed ID: 34808531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study.
    Elamrani Abou Elassad Z; Mousannif H; Al Moatassime H
    Traffic Inj Prev; 2020; 21(3):201-208. PubMed ID: 32125890
    [No Abstract]   [Full Text] [Related]  

  • 16. A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram.
    Wu CK; Tsang KF; Chi HR; Hung FH
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27171090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prevalence of mobile phone use among drivers: direct observation in Udine (Northern Italy)].
    Valent F; Del Pin M; Mattiussi E; Palese A;
    Epidemiol Prev; 2020; 44(2-3):171-178. PubMed ID: 32631017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ECG monitoring of a car driver using capacitively-coupled electrodes.
    Matsuda T; Makikawa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1315-8. PubMed ID: 19162909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Framework for Motion-Tolerant Instantaneous Heart Rate Estimation by Phase-Domain Multiview Dynamic Time Warping.
    Zhang Q; Zhou D; Zeng X
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2562-2574. PubMed ID: 28113198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing Electrocardiogram and Respiratory Signal Quality of a Wearable Device (SensEcho): Semisupervised Machine Learning-Based Validation Study.
    Xu H; Yan W; Lan K; Ma C; Wu D; Wu A; Yang Z; Wang J; Zang Y; Yan M; Zhang Z
    JMIR Mhealth Uhealth; 2021 Aug; 9(8):e25415. PubMed ID: 34387554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.