These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 35161792)
1. Study on the Control Method of Knee Joint Human-Exoskeleton Interactive System. Wang Z; Yang C; Ding Z; Yang T; Guo H; Jiang F; Tian B Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161792 [TBL] [Abstract][Full Text] [Related]
2. Force Transmission Analysis and Optimization of Bowden Cable on Body in a Flexible Exoskeleton. Li X; Liu J; Li W; Huang Y; Zhan G Appl Bionics Biomech; 2022; 2022():5552166. PubMed ID: 35937097 [TBL] [Abstract][Full Text] [Related]
3. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design. Anderson A; Richburg C; Czerniecki J; Aubin P IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656 [TBL] [Abstract][Full Text] [Related]
4. Walking Strategies and Performance Evaluation for Human-Exoskeleton Systems under Admittance Control. Liang C; Hsiao T Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759803 [TBL] [Abstract][Full Text] [Related]
5. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters. Chen W; Li Z; Cui X; Zhang J; Bai S Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848 [TBL] [Abstract][Full Text] [Related]
6. Development and Validation of a Self-Aligning Knee Exoskeleton With Hip Rotation Capability. Li G; Liang X; Lu H; Su T; Hou ZG IEEE Trans Neural Syst Rehabil Eng; 2024; 32():472-481. PubMed ID: 38227411 [TBL] [Abstract][Full Text] [Related]
7. Development of a Single Leg Knee Exoskeleton and Sensing Knee Center of Rotation Change for Intention Detection. Moon DH; Kim D; Hong YD Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540298 [TBL] [Abstract][Full Text] [Related]
8. Learning-Based Repetitive Control of a Bowden-Cable-Actuated Exoskeleton with Frictional Hysteresis. Shi Y; Guo M; Hui C; Li S; Ji X; Yang Y; Luo X; Xia D Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296027 [TBL] [Abstract][Full Text] [Related]
9. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton. Xiao F ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342 [TBL] [Abstract][Full Text] [Related]
10. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton. Wang Y; Wang H; Tian Y ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010 [TBL] [Abstract][Full Text] [Related]
13. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting. Xia Y; Wei W; Lin X; Li J Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041 [TBL] [Abstract][Full Text] [Related]
14. Design and Control of an Adaptive Knee Joint Exoskeleton Mechanism with Buffering Function. Wang Y; Zhang W; Shi D; Geng Y Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960484 [TBL] [Abstract][Full Text] [Related]
15. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation. Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730 [TBL] [Abstract][Full Text] [Related]
16. Simulation of Exoskeleton Alignment and its Effect on the Knee Extensor and Flexor Muscles. MajidiRad A; Yihun Y; Desai J; Hakansson NA Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4093-4096. PubMed ID: 31946771 [TBL] [Abstract][Full Text] [Related]
17. Gait Prediction and Variable Admittance Control for Lower Limb Exoskeleton With Measurement Delay and Extended-State-Observer. Chen Z; Guo Q; Li T; Yan Y; Jiang D IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8693-8706. PubMed ID: 35302939 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking. Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349 [TBL] [Abstract][Full Text] [Related]
19. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
20. Divergent Component of Motion Planning and Adaptive Repetitive Control for Wearable Walking Exoskeletons. Huang P; Li Z; Zhou M; Kan Z IEEE Trans Cybern; 2024 Apr; 54(4):2244-2256. PubMed ID: 36455087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]