These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 35161830)
1. A Cylindrical Grip Type of Tactile Device Using Magneto-Responsive Materials Integrated with Surgical Robot Console: Design and Analysis. Park YJ; Lee ES; Choi SB Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161830 [TBL] [Abstract][Full Text] [Related]
2. A New Tactile Transfer Cell Using Magnetorheological Materials for Robot-Assisted Minimally Invasive Surgery. Park YJ; Choi SB Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925922 [TBL] [Abstract][Full Text] [Related]
3. A Tactile Device Generating Repulsive Forces of Various Human Tissues Fabricated from Magnetic-Responsive Fluid in Porous Polyurethane. Park YJ; Yoon JY; Kang BH; Kim GW; Choi SB Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32120835 [TBL] [Abstract][Full Text] [Related]
4. Field-Dependent Stiffness of a Soft Structure Fabricated from Magnetic-Responsive Materials: Magnetorheological Elastomer and Fluid. Song BK; Yoon JY; Hong SW; Choi SB Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093312 [TBL] [Abstract][Full Text] [Related]
5. A resonant tactile stiffness sensor for lump localization in robot-assisted minimally invasive surgery. Yun Y; Wang Y; Guo H; Wang Y; Wu H; Chen B; Ju F Proc Inst Mech Eng H; 2019 Sep; 233(9):909-920. PubMed ID: 31210594 [TBL] [Abstract][Full Text] [Related]
6. A Novel Tactile Sensing System Utilizing Magnetorheological Structures for Dynamic Contraction and Relaxation Motions. Park YJ; Kim BG; Lee ES; Choi SB Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005423 [TBL] [Abstract][Full Text] [Related]
7. Design and Experimental Research of Robot Finger Sliding Tactile Sensor Based on FBG. Lu G; Fu S; Xu Y Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366086 [TBL] [Abstract][Full Text] [Related]
8. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Yan Y; Hu Z; Yang Z; Yuan W; Song C; Pan J; Shen Y Sci Robot; 2021 Feb; 6(51):. PubMed ID: 34043530 [TBL] [Abstract][Full Text] [Related]
9. Robot hand with soft tactile sensors and underactuated control. Tsutsui H; Murashima Y; Honma N; Akazawa K Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4148-51. PubMed ID: 24110645 [TBL] [Abstract][Full Text] [Related]
10. Beyond Human Hand: Shape-Adaptive and Reversible Magnetorheological Elastomer-Based Robot Gripper Skin. Choi DS; Kim TH; Lee SH; Pang C; Bae JW; Kim SY ACS Appl Mater Interfaces; 2020 Sep; 12(39):44147-44155. PubMed ID: 32870646 [TBL] [Abstract][Full Text] [Related]
11. Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery. Bandari NM; Ahmadi R; Hooshiar A; Dargahi J; Packirisamy M J Biomed Opt; 2017 Jul; 22(7):77002. PubMed ID: 28734117 [TBL] [Abstract][Full Text] [Related]
12. The role of tactile feedback in grip force during laparoscopic training tasks. Wottawa CR; Cohen JR; Fan RE; Bisley JW; Culjat MO; Grundfest WS; Dutson EP Surg Endosc; 2013 Apr; 27(4):1111-8. PubMed ID: 23233002 [TBL] [Abstract][Full Text] [Related]
13. Direction-Specific Effects of Artificial Skin-Stretch on Stiffness Perception and Grip Force Control. Farajian M; Leib R; Kossowsky H; Nisky I IEEE Trans Haptics; 2023; 16(4):836-847. PubMed ID: 37956003 [TBL] [Abstract][Full Text] [Related]
14. Mexican-Hat-Like Response in a Flexible Tactile Sensor Using a Magnetorheological Elastomer. Kawasetsu T; Horii T; Ishihara H; Asada M Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443916 [TBL] [Abstract][Full Text] [Related]
15. Sensors and Sensing Devices Utilizing Electrorheological Fluids and Magnetorheological Materials-A Review. Park YJ; Choi SB Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732948 [TBL] [Abstract][Full Text] [Related]
16. Tunable Young's Moduli of Soft Composites Fabricated from Magnetorheological Materials Containing Microsized Iron Particles. Yoon JY; Hong SW; Park YJ; Kim SH; Kim GW; Choi SB Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751548 [TBL] [Abstract][Full Text] [Related]
17. Solid-Liquid State Transformable Magnetorheological Millirobot. Chen Z; Lu W; Li Y; Liu P; Yang Y; Jiang L ACS Appl Mater Interfaces; 2022 Jul; 14(26):30007-30020. PubMed ID: 35727886 [TBL] [Abstract][Full Text] [Related]
18. Virtual surface characteristics of a tactile display using magneto-rheological fluids. Lee CH; Jang MG Sensors (Basel); 2011; 11(3):2845-56. PubMed ID: 22163769 [TBL] [Abstract][Full Text] [Related]
19. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot. Hu Z; Yoon CH; Park SB; Jo YH Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414 [TBL] [Abstract][Full Text] [Related]
20. Design and implementation of a hand-held robot-assisted minimally invasive surgical device with enhanced intuitive manipulability and stable grip force. Yang Y; Kong K; Li J; Wang S Int J Med Robot; 2021 Aug; 17(4):e2286. PubMed ID: 34022119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]