These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 35161846)
1. Research on Minimization of Data Set for State of Charge Prediction. Liu T; Zhao J; Xiang C; Cheng S Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161846 [TBL] [Abstract][Full Text] [Related]
2. Research on precise lithium battery state of charge estimation method based on CALSE-LSTM model and pelican algorithm. Ding Z; Hu D; Jing Y; Ma M; Xie Y; Yin Q; Zeng X; Zhang C; Peng T; Ji J Heliyon; 2024 Aug; 10(16):e36232. PubMed ID: 39253252 [TBL] [Abstract][Full Text] [Related]
3. A remaining useful life estimation method based on long short-term memory and federated learning for electric vehicles in smart cities. Chen X; Chen Z; Zhang M; Wang Z; Liu M; Fu M; Wang P PeerJ Comput Sci; 2023; 9():e1652. PubMed ID: 38077580 [TBL] [Abstract][Full Text] [Related]
4. A simulation-driven prediction model for state of charge estimation of electric vehicle lithium battery. Zhang J; Song C; Xiang J Heliyon; 2024 May; 10(10):e30988. PubMed ID: 38770289 [TBL] [Abstract][Full Text] [Related]
5. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries. Lee JH; Lee IS Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040 [TBL] [Abstract][Full Text] [Related]
6. Stable and Accurate Estimation of SOC Using eXogenous Kalman Filter for Lithium-Ion Batteries. Lin Q; Li X; Tu B; Cao J; Zhang M; Xiang J Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617064 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based state of charge estimation for electric vehicle batteries: Overcoming technological bottlenecks. Lin SL Heliyon; 2024 Aug; 10(16):e35780. PubMed ID: 39253128 [TBL] [Abstract][Full Text] [Related]
8. State of charge estimation for lithium-ion battery based on whale optimization algorithm and multi-kernel relevance vector machine. Chen K; Zhou S; Liu K; Gao G; Wu G J Chem Phys; 2023 Mar; 158(10):104110. PubMed ID: 36922144 [TBL] [Abstract][Full Text] [Related]
10. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni Li H; Duan Q; Zhao C; Huang Z; Wang Q J Hazard Mater; 2019 Aug; 375():241-254. PubMed ID: 31078060 [TBL] [Abstract][Full Text] [Related]
11. State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning. Yao L; Wen J; Xu S; Zheng J; Hou J; Fang Z; Xiao Y Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298185 [TBL] [Abstract][Full Text] [Related]
12. State of energy estimation of lithium-ion battery based on long short-term memory optimization Adaptive Cubature Kalman filter. Hou E; Song H; Wang Z; Zhu J; Tang J; Shen G; Wang J PLoS One; 2024; 19(7):e0306165. PubMed ID: 38985707 [TBL] [Abstract][Full Text] [Related]
13. A Dual-Input Neural Network for Online State-of-Charge Estimation of the Lithium-Ion Battery throughout Its Lifetime. Qian C; Xu B; Xia Q; Ren Y; Yang D; Wang Z Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079313 [TBL] [Abstract][Full Text] [Related]
14. Enhanced SOC estimation of lithium ion batteries with RealTime data using machine learning algorithms. D OP; Babu PS; V I; B A; S V; C K Sci Rep; 2024 Jul; 14(1):16036. PubMed ID: 38992178 [TBL] [Abstract][Full Text] [Related]
15. Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques. Hannan MA; Lipu MSH; Hussain A; Ker PJ; Mahlia TMI; Mansor M; Ayob A; Saad MH; Dong ZY Sci Rep; 2020 Mar; 10(1):4687. PubMed ID: 32170100 [TBL] [Abstract][Full Text] [Related]
16. Jitter solution in parameter identification based on cross-time scale fusion algorithm of lithium-ion batteries. Su X; Ge Y; Qiao X Heliyon; 2024 Apr; 10(8):e29402. PubMed ID: 38655324 [TBL] [Abstract][Full Text] [Related]
17. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries. Xu J; Liu B; Hu D Sci Rep; 2016 Feb; 6():21829. PubMed ID: 26911922 [TBL] [Abstract][Full Text] [Related]
18. State of Charge Estimation of Lithium-Ion Batteries Using Stacked Encoder-Decoder Bi-Directional LSTM for EV and HEV Applications. Terala PK; Ogundana AS; Foo SY; Amarasinghe MY; Zang H Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144020 [TBL] [Abstract][Full Text] [Related]
19. The fire risk of portable batteries in their end-of-life: Investigation of the state of charge of waste lithium-ion batteries in Austria. Nigl T; Bäck T; Stuhlpfarrer S; Pomberger R Waste Manag Res; 2021 Sep; 39(9):1193-1199. PubMed ID: 33843368 [TBL] [Abstract][Full Text] [Related]
20. State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy. Navega Vieira R; Mauricio Villanueva JM; Sales Flores TK; Tavares de Macêdo EC Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]