These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35161861)

  • 21. A Precise and GNSS-Free Landing System on Moving Platforms for Rotary-Wing UAVs.
    Alarcón F; García M; Maza I; Viguria A; Ollero A
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.
    Paull L; Thibault C; Nagaty A; Seto M; Li H
    IEEE Trans Cybern; 2014 Sep; 44(9):1605-18. PubMed ID: 25137689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MNNMs Integrated Control for UAV Autonomous Tracking Randomly Moving Target Based on Learning Method.
    Li M; Cai Z; Zhao J; Wang Y; Wang Y; Lu K
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring Aircraft Position Using EGNOS Data for the SBAS APV Approach to the Landing Procedure.
    Krasuski K; Wierzbicki D
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion Estimation by Hybrid Optical Flow Technology for UAV Landing in an Unvisited Area.
    Cheng HW; Chen TL; Tien CH
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30897741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
    Nepal U; Eslamiat H
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Operational Load Monitoring System for Fatigue Estimation of Main Landing Gear Attachment Frame of an Aircraft.
    Dziendzikowski M; Kurnyta A; Reymer P; Kurdelski M; Klysz S; Leski A; Dragan K
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Line-of-sight in operating a small unmanned aerial vehicle: How far can a quadcopter fly in line-of-sight?
    Li KW; Jia H; Peng L; Gan L
    Appl Ergon; 2019 Nov; 81():102898. PubMed ID: 31422266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Framework for Qualification of a Composite-Based Main Landing Gear Strut of a Lightweight Aircraft.
    Ahmad MA; Ali Shah SI; Khan SA; Khan HA; Shams TA
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. UAV Landing Using Computer Vision Techniques for Human Detection.
    Safadinho D; Ramos J; Ribeiro R; Filipe V; Barroso J; Pereira A
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autonomous Aerial Refueling Ground Test Demonstration--A Sensor-in-the-Loop, Non-Tracking Method.
    Chen CI; Koseluk R; Buchanan C; Duerner A; Jeppesen B; Laux H
    Sensors (Basel); 2015 May; 15(5):10948-72. PubMed ID: 25970254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic combination of position and motion information when tracking moving targets.
    Goettker A; Braun DI; Gegenfurtner KR
    J Vis; 2019 Jul; 19(7):2. PubMed ID: 31287856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aircraft Landing Gear Retraction/Extension System Fault Diagnosis with 1-D Dilated Convolutional Neural Network.
    Chen J; Xu Q; Guo Y; Chen R
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micro aerial vehicle with basic risk of operation.
    de Lucena AN; da Silva BMF; Gonçalves LMG
    Sci Rep; 2022 Jul; 12(1):12772. PubMed ID: 35896657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
    Nguyen PH; Kim KW; Lee YW; Park KR
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auto-landing of fixed wing unmanned aerial vehicles using the backstepping control.
    Lungu M
    ISA Trans; 2019 Dec; 95():194-210. PubMed ID: 31171303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. UWB and IMU-Based UAV's Assistance System for Autonomous Landing on a Platform.
    Ochoa-de-Eribe-Landaberea A; Zamora-Cadenas L; Peñagaricano-Muñoa O; Velez I
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infrared-Inertial Navigation for Commercial Aircraft Precision Landing in Low Visibility and GPS-Denied Environments.
    Zhang L; Zhai Z; He L; Wen P; Niu W
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Neural Algorithm for the Detection and Correction of Anomalies: Application to the Landing of an Airplane.
    Mur A; Travé-Massuyès L; Chanthery E; Pons R; Ribot P
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Standoff tracking of a ground target based on coordinated turning guidance law.
    Lin C; Shi J; Zhang W; Lyu Y
    ISA Trans; 2022 Jan; 119():118-134. PubMed ID: 33745695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.