These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35161863)

  • 1. Beam Damage Assessment Using Natural Frequency Shift and Machine Learning.
    Gillich N; Tufisi C; Sacarea C; Rusu CV; Gillich GR; Praisach ZI; Ardeljan M
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Neural Network Approach to Estimate the Frequency of a Cantilever Beam with Random Multiple Damages.
    Saha P; Yang M
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images.
    Ferjaoui R; Cherni MA; Boujnah S; Kraiem NEH; Kraiem T
    Comput Methods Programs Biomed; 2021 Sep; 209():106320. PubMed ID: 34390938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics.
    Ferreira da Costa J; Silva D; Caamaño O; Brea JM; Loza MI; Munteanu CR; Pazos A; García-Mera X; González-Díaz H
    ACS Chem Neurosci; 2018 Nov; 9(11):2572-2587. PubMed ID: 29791132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crack Detection in Images of Masonry Using CNNs.
    Hallee MJ; Napolitano RK; Reinhart WF; Glisic B
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An artificial neural network to model response of a radiotherapy beam monitoring system.
    Cho YB; Farrokhkish M; Norrlinger B; Heaton R; Jaffray D; Islam M
    Med Phys; 2020 Apr; 47(4):1983-1994. PubMed ID: 31955428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building machine learning models without sharing patient data: A simulation-based analysis of distributed learning by ensembling.
    Tuladhar A; Gill S; Ismail Z; Forkert ND;
    J Biomed Inform; 2020 Jun; 106():103424. PubMed ID: 32335226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug delivery: Experiments, mathematical modelling and machine learning.
    Boso DP; Di Mascolo D; Santagiuliana R; Decuzzi P; Schrefler BA
    Comput Biol Med; 2020 Aug; 123():103820. PubMed ID: 32658778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damage Detection on a Beam with Multiple Cracks: A Simplified Method Based on Relative Frequency Shifts.
    Gillich GR; Maia NMM; Wahab MA; Tufisi C; Korka ZI; Gillich N; Pop MV
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple Damage Detection of an Offshore Helideck through the Two-Step Artificial Neural Network Based on the Limited Mode Shape Data.
    Kim B; Kim C; Ha SH
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explainable machine learning for precise fatigue crack tip detection.
    Melching D; Strohmann T; Requena G; Breitbarth E
    Sci Rep; 2022 Jun; 12(1):9513. PubMed ID: 35680941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions.
    El-Khatib H; Popescu D; Ichim L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques.
    Das A; Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105578. PubMed ID: 32408143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Received Signal Strength Fingerprinting-Based Indoor Location Estimation Employing Machine Learning.
    Polak L; Rozum S; Slanina M; Bravenec T; Fryza T; Pikrakis A
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning goes wild: Using data from captive individuals to infer wildlife behaviours.
    Rast W; Kimmig SE; Giese L; Berger A
    PLoS One; 2020; 15(5):e0227317. PubMed ID: 32369485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LT-FS-ID: Log-Transformed Feature Learning and Feature-Scaling-Based Machine Learning Algorithms to Predict the
    Singh A; Amutha J; Nagar J; Sharma S; Lee CC
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multioutput Perturbation-Theory Machine Learning (PTML) Model of ChEMBL Data for Antiretroviral Compounds.
    Vásquez-Domínguez E; Armijos-Jaramillo VD; Tejera E; González-Díaz H
    Mol Pharm; 2019 Oct; 16(10):4200-4212. PubMed ID: 31426639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.