These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 35161903)
1. A High-Performance Deep Neural Network Model for BI-RADS Classification of Screening Mammography. Tsai KJ; Chou MC; Li HM; Liu ST; Hsu JH; Yeh WC; Hung CM; Yeh CY; Hwang SH Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161903 [TBL] [Abstract][Full Text] [Related]
2. A deep learning method for classifying mammographic breast density categories. Mohamed AA; Berg WA; Peng H; Luo Y; Jankowitz RC; Wu S Med Phys; 2018 Jan; 45(1):314-321. PubMed ID: 29159811 [TBL] [Abstract][Full Text] [Related]
3. A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms. Boumaraf S; Liu X; Ferkous C; Ma X Biomed Res Int; 2020; 2020():7695207. PubMed ID: 32462017 [TBL] [Abstract][Full Text] [Related]
4. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective. Mohamed AA; Luo Y; Peng H; Jankowitz RC; Wu S J Digit Imaging; 2018 Aug; 31(4):387-392. PubMed ID: 28932980 [TBL] [Abstract][Full Text] [Related]
5. A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening. Liu H; Chen Y; Zhang Y; Wang L; Luo R; Wu H; Wu C; Zhang H; Tan W; Yin H; Wang D Eur Radiol; 2021 Aug; 31(8):5902-5912. PubMed ID: 33496829 [TBL] [Abstract][Full Text] [Related]
7. Classification of mammographic breast density and its correlation with BI-RADS in elder women using machine learning approach. Lee ZY; Goh YLE; Lai C J Med Imaging Radiat Sci; 2022 Mar; 53(1):28-34. PubMed ID: 34801440 [TBL] [Abstract][Full Text] [Related]
8. An effective fine grading method of BI-RADS classification in mammography. Lin F; Sun H; Han L; Li J; Bao N; Li H; Chen J; Zhou S; Yu T Int J Comput Assist Radiol Surg; 2022 Feb; 17(2):239-247. PubMed ID: 34940931 [TBL] [Abstract][Full Text] [Related]
9. Application of the downgrade criteria to supplemental screening ultrasound for women with negative mammography but dense breasts. Kim SY; Kim MJ; Moon HJ; Yoon JH; Kim EK Medicine (Baltimore); 2016 Nov; 95(44):e5279. PubMed ID: 27858896 [TBL] [Abstract][Full Text] [Related]
10. Mammographic density measured with quantitative computer-aided method: comparison with radiologists' estimates and BI-RADS categories. Martin KE; Helvie MA; Zhou C; Roubidoux MA; Bailey JE; Paramagul C; Blane CE; Klein KA; Sonnad SS; Chan HP Radiology; 2006 Sep; 240(3):656-65. PubMed ID: 16857974 [TBL] [Abstract][Full Text] [Related]
11. Automated and Clinical Breast Imaging Reporting and Data System Density Measures Predict Risk for Screen-Detected and Interval Cancers: A Case-Control Study. Kerlikowske K; Scott CG; Mahmoudzadeh AP; Ma L; Winham S; Jensen MR; Wu FF; Malkov S; Pankratz VS; Cummings SR; Shepherd JA; Brandt KR; Miglioretti DL; Vachon CM Ann Intern Med; 2018 Jun; 168(11):757-765. PubMed ID: 29710124 [TBL] [Abstract][Full Text] [Related]
12. Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study. Hinton B; Ma L; Mahmoudzadeh AP; Malkov S; Fan B; Greenwood H; Joe B; Lee V; Kerlikowske K; Shepherd J Cancer Imaging; 2019 Jun; 19(1):41. PubMed ID: 31228956 [TBL] [Abstract][Full Text] [Related]
13. Breast Cancer Risk and Mammographic Density Assessed with Semiautomated and Fully Automated Methods and BI-RADS. Jeffers AM; Sieh W; Lipson JA; Rothstein JH; McGuire V; Whittemore AS; Rubin DL Radiology; 2017 Feb; 282(2):348-355. PubMed ID: 27598536 [TBL] [Abstract][Full Text] [Related]
14. Computer-aided classification of BI-RADS category 3 breast lesions. Buchbinder SS; Leichter IS; Lederman RB; Novak B; Bamberger PN; Sklair-Levy M; Yarmish G; Fields SI Radiology; 2004 Mar; 230(3):820-3. PubMed ID: 14739315 [TBL] [Abstract][Full Text] [Related]
15. Classification of Mammographic Breast Microcalcifications Using a Deep Convolutional Neural Network: A BI-RADS-Based Approach. Schönenberger C; Hejduk P; Ciritsis A; Marcon M; Rossi C; Boss A Invest Radiol; 2021 Apr; 56(4):224-231. PubMed ID: 33038095 [TBL] [Abstract][Full Text] [Related]
16. Clinical application of convolutional neural network for mass analysis on mammograms. Li L; Lin X; Liao T; Ouyang R; Li M; Yuan J; Ma J Quant Imaging Med Surg; 2023 Dec; 13(12):8413-8422. PubMed ID: 38106316 [TBL] [Abstract][Full Text] [Related]
17. Automated Breast Ultrasound in Breast Cancer Screening of Women With Dense Breasts: Reader Study of Mammography-Negative and Mammography-Positive Cancers. Giger ML; Inciardi MF; Edwards A; Papaioannou J; Drukker K; Jiang Y; Brem R; Brown JB AJR Am J Roentgenol; 2016 Jun; 206(6):1341-50. PubMed ID: 27043979 [TBL] [Abstract][Full Text] [Related]
18. Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening. Wu N; Phang J; Park J; Shen Y; Huang Z; Zorin M; Jastrzebski S; Fevry T; Katsnelson J; Kim E; Wolfson S; Parikh U; Gaddam S; Lin LLY; Ho K; Weinstein JD; Reig B; Gao Y; Toth H; Pysarenko K; Lewin A; Lee J; Airola K; Mema E; Chung S; Hwang E; Samreen N; Kim SG; Heacock L; Moy L; Cho K; Geras KJ IEEE Trans Med Imaging; 2020 Apr; 39(4):1184-1194. PubMed ID: 31603772 [TBL] [Abstract][Full Text] [Related]
19. Mammographic breast density: How it affects performance indicators in screening programmes? Posso M; Louro J; Sánchez M; Román M; Vidal C; Sala M; Baré M; Castells X; Eur J Radiol; 2019 Jan; 110():81-87. PubMed ID: 30599878 [TBL] [Abstract][Full Text] [Related]