These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35161931)

  • 1. Electrical and Low Frequency Noise Characterization of Graphene Chemical Sensor Devices Having Different Geometries.
    Nah J; Perkins FK; Lock EH; Nath A; Boyd A; Myers-Ward RL; Gaskill DK; Osofsky M; Rao MV
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective gas sensing with a single pristine graphene transistor.
    Rumyantsev S; Liu G; Shur MS; Potyrailo RA; Balandin AA
    Nano Lett; 2012 May; 12(5):2294-8. PubMed ID: 22506589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing Remote Bulk Defects through Resistance Noise in a Large-Area Graphene Field-Effect Transistor.
    Moulick S; Alam R; Pal AN
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51105-51112. PubMed ID: 36323003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene field effect transistor scaling for ultra-low-noise sensors.
    Tran NAM; Fakih I; Durnan O; Hu A; Aygar AM; Napal I; Centeno A; Zurutuza A; Reulet B; Szkopek T
    Nanotechnology; 2021 Jan; 32(4):045502. PubMed ID: 33049728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defect-free functionalized graphene sensor for formaldehyde detection.
    Tang X; Mager N; Vanhorenbeke B; Hermans S; Raskin JP
    Nanotechnology; 2017 Feb; 28(5):055501. PubMed ID: 28008891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency 1/f noise in graphene devices.
    Balandin AA
    Nat Nanotechnol; 2013 Aug; 8(8):549-55. PubMed ID: 23912107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunability of 1/f Noise at Multiple Dirac Cones in hBN Encapsulated Graphene Devices.
    Kumar C; Kuiri M; Jung J; Das T; Das A
    Nano Lett; 2016 Feb; 16(2):1042-9. PubMed ID: 26765292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials.
    Choi C; Lee Y; Cho KW; Koo JH; Kim DH
    Acc Chem Res; 2019 Jan; 52(1):73-81. PubMed ID: 30586292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved photo- and chemical-responses of graphene via porphyrin-functionalization for flexible, transparent, and sensitive sensors.
    Pyo S; Choi J; Kim J
    Nanotechnology; 2019 May; 30(21):215501. PubMed ID: 30721895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First Principles Simulations of Phenol and Methanol Detector Based on Pristine Graphene Nanosheet and Armchair Graphene Nanoribbons.
    Haroon Rashid M; Koel A; Rang T
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31216657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Insight into the Limiting Factors of Graphene-Based Environmental Sensors.
    Rautela R; Scarfe S; Guay JM; Lazar P; Pykal M; Azimi S; Grenapin C; Boddison-Chouinard J; Halpin A; Wang W; Andrzejewski L; Plumadore R; Park J; Ménard JM; Otyepka M; Luican-Mayer A
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39764-39771. PubMed ID: 32658444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong suppression of electrical noise in bilayer graphene nanodevices.
    Lin YM; Avouris P
    Nano Lett; 2008 Aug; 8(8):2119-25. PubMed ID: 18298094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnitude and Origin of Electrical Noise at Individual Grain Boundaries in Graphene.
    Kochat V; Tiwary CS; Biswas T; Ramalingam G; Hsieh K; Chattopadhyay K; Raghavan S; Jain M; Ghosh A
    Nano Lett; 2016 Jan; 16(1):562-7. PubMed ID: 26632989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current crowding mediated large contact noise in graphene field-effect transistors.
    Karnatak P; Sai TP; Goswami S; Ghatak S; Kaushal S; Ghosh A
    Nat Commun; 2016 Dec; 7():13703. PubMed ID: 27929087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
    Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS
    Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable 1/
    Tian M; Hu Q; Gu C; Xiong X; Zhang Z; Li X; Wu Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17686-17690. PubMed ID: 32189495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical Low-Frequency 1/
    Kamada M; Laitinen A; Zeng W; Will M; Sarkar J; Tappura K; Seppä H; Hakonen P
    Nano Lett; 2021 Sep; 21(18):7637-7643. PubMed ID: 34491764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Few-Flakes Reduced Graphene Oxide Sensors for Organic Vapors with a High Signal-to-Noise Ratio.
    Hasan N; Zhang W; Radadia AD
    Nanomaterials (Basel); 2017 Oct; 7(10):. PubMed ID: 29065488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosensing near the neutrality point of graphene.
    Fu W; Feng L; Panaitov G; Kireev D; Mayer D; Offenhäusser A; Krause HJ
    Sci Adv; 2017 Oct; 3(10):e1701247. PubMed ID: 29075669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.
    Foley BM; Hernández SC; Duda JC; Robinson JT; Walton SG; Hopkins PE
    Nano Lett; 2015 Aug; 15(8):4876-82. PubMed ID: 26125524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.