BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35162014)

  • 21. Acoustic sorting of airborne particles by a phononic crystal waveguide.
    Korozlu N; Biçer A; Sayarcan D; Adem Kaya O; Cicek A
    Ultrasonics; 2022 Aug; 124():106777. PubMed ID: 35660202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells.
    Fakhfouri A; Colditz M; Devendran C; Ivanova K; Jacob S; Neild A; Winkler A
    ACS Appl Mater Interfaces; 2023 May; 15(20):24023-24033. PubMed ID: 37188328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers.
    Wang Y; Pan H; Mei D; Xu C; Weng W
    Lab Chip; 2022 Mar; 22(6):1149-1161. PubMed ID: 35134105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Action of low frequency vibration on liquid droplets and particles.
    Bennès J; Alzuaga S; Chabé P; Morain G; Chérioux F; Manceau JF; Bastien F
    Ultrasonics; 2006 Dec; 44 Suppl 1():e497-502. PubMed ID: 16797647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical study of acoustophoretic manipulation of particles in microfluidic channels.
    Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y
    Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface acoustic wave concentration of particle and bioparticle suspensions.
    Li H; Friend JR; Yeo LY
    Biomed Microdevices; 2007 Oct; 9(5):647-56. PubMed ID: 17530412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Microsyst Nanoeng; 2024; 10():33. PubMed ID: 38463549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear hydrodynamic effects induced by Rayleigh surface acoustic wave in sessile droplets.
    Alghane M; Chen BX; Fu YQ; Li Y; Desmulliez MP; Mohammed MI; Walton AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056304. PubMed ID: 23214873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II.
    Sachs S; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces.
    Lei J
    Microfluid Nanofluidics; 2017; 21(3):50. PubMed ID: 32226357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB.
    Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X
    Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism and stability investigation of a nozzle-free droplet-on-demand acoustic ejector.
    Ning Y; Zhang M; Zhang H; Duan X; Yuan Y; Liu B; Pang W
    Analyst; 2021 Sep; 146(18):5650-5657. PubMed ID: 34378558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Swirl-like Acoustofluidic Stirring Facilitates Microscale Reactions in Sessile Droplets.
    Lan H; Qian J; Liu Y; Lu S; Zhang B; Huang L; Hu X; Zhang W
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.
    Hahn P; Leibacher I; Baasch T; Dual J
    Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells.
    Liu P; Tian Z; Hao N; Bachman H; Zhang P; Hu J; Huang TJ
    Lab Chip; 2020 Sep; 20(18):3399-3409. PubMed ID: 32779677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.