These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35162023)
1. An Inkjet Printed Flexible Electrocorticography (ECoG) Microelectrode Array on a Thin Parylene-C Film. Kim Y; Alimperti S; Choi P; Noh M Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162023 [TBL] [Abstract][Full Text] [Related]
2. A convex-shaped, PDMS-parylene hybrid multichannel ECoG-electrode array. Woo-Ram Lee ; Changkyun Im ; Chin Su Koh ; Jun-Min Kim ; Hyung-Cheul Shin ; Jong-Mo Seo Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1093-1096. PubMed ID: 29060065 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical characteristics of microelectrode designed for electrical stimulation. Cui H; Xie X; Xu S; Chan LLH; Hu Y Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902 [TBL] [Abstract][Full Text] [Related]
4. Acute in vivo Recording with a Generic Parylene Microelectrode Array Implanted with Dip-coating Method into the Rat Brain. Xu H; Scholten K; Jiang W; Ortigoza-Diaz JL; Lu Z; Liu X; Meng E; Song D Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():214-217. PubMed ID: 36086181 [TBL] [Abstract][Full Text] [Related]
5. A flexible implantable microelectrode array for recording electrocorticography signals from rodents. Chatterjee S; Sakorikar T; Bs A; Joshi RK; Sikaria A; Jayachandra M; V V; Pandya HJ Biomed Microdevices; 2022 Sep; 24(4):31. PubMed ID: 36138255 [TBL] [Abstract][Full Text] [Related]
6. PDMS-Parylene Hybrid, Flexible Micro-ECoG Electrode Array for Spatiotemporal Mapping of Epileptic Electrophysiological Activity from Multicortical Brain Regions. Li X; Song Y; Xiao G; He E; Xie J; Dai Y; Xing Y; Wang Y; Wang Y; Xu S; Wang M; Tao TH; Cai X ACS Appl Bio Mater; 2021 Nov; 4(11):8013-8022. PubMed ID: 35006782 [TBL] [Abstract][Full Text] [Related]
7. Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording. Li SY; Tseng HY; Chen BW; Lo YC; Shao HH; Wu YT; Li SJ; Chang CW; Liu TC; Hsieh FY; Yang Y; Lai YB; Chen PC; Chen YY Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832046 [TBL] [Abstract][Full Text] [Related]
8. Pre-implantation electrochemical characterization of a Parylene C sheath microelectrode array probe. Hara SA; Kim BJ; Kuo JT; Lee C; Gutierrez CA; Hoang T; Meng E Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5126-9. PubMed ID: 23367082 [TBL] [Abstract][Full Text] [Related]
9. An Intrafascicular Neural Interface With Enhanced Interconnection for Recording of Peripheral Nerve Signals. Kang YN; Chou N; Jang JW; Byun D; Kang H; Moon DJ; Kim J; Kim S IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1312-1319. PubMed ID: 31135364 [TBL] [Abstract][Full Text] [Related]
10. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
11. A fully transparent, flexible PEDOT:PSS-ITO-Ag-ITO based microelectrode array for ECoG recording. Yang W; Gong Y; Yao CY; Shrestha M; Jia Y; Qiu Z; Fan QH; Weber A; Li W Lab Chip; 2021 Mar; 21(6):1096-1108. PubMed ID: 33522526 [TBL] [Abstract][Full Text] [Related]
12. Flexible parylene-based microelectrode arrays for high resolution EMG recordings in freely moving small animals. Metallo C; White RD; Trimmer BA J Neurosci Methods; 2011 Feb; 195(2):176-84. PubMed ID: 21167202 [TBL] [Abstract][Full Text] [Related]
13. Development of a novel, concentric micro-ECoG array enabling simultaneous detection of a single location by multiple electrode sizes. Akamine IR; Garich JV; Gulick DW; Hara SA; Benscoter MA; Kuehn ST; Worrell GA; Raupp GB; Blain Christen JM Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38744259 [No Abstract] [Full Text] [Related]
14. Towards circuit integration on fully flexible parylene substrates. Wang K; van Deurzen M; Kooyman N; Decre MM Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5866-9. PubMed ID: 19964876 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of microelectrode materials for direct-current electrocorticography. Li C; Narayan RK; Wu PM; Rajan N; Wu Z; Mehan N; Golanov EV; Ahn CH; Hartings JA J Neural Eng; 2016 Feb; 13(1):016008. PubMed ID: 26655565 [TBL] [Abstract][Full Text] [Related]
16. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology. Márton G; Orbán G; Kiss M; Fiáth R; Pongrácz A; Ulbert I PLoS One; 2015; 10(12):e0145307. PubMed ID: 26683306 [TBL] [Abstract][Full Text] [Related]
17. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Kuo JT; Kim BJ; Hara SA; Lee CD; Gutierrez CA; Hoang TQ; Meng E Lab Chip; 2013 Feb; 13(4):554-61. PubMed ID: 23160191 [TBL] [Abstract][Full Text] [Related]
18. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes. Hara SA; Kim BJ; Kuo JT; Lee CD; Meng E; Pikov V J Neural Eng; 2016 Dec; 13(6):066020. PubMed ID: 27819256 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Al Caldwell R; Mandal H; Sharma R; Solzbacher F; Tathireddy P; Rieth L J Neural Eng; 2017 Aug; 14(4):046011. PubMed ID: 28351998 [TBL] [Abstract][Full Text] [Related]
20. Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C. Mandelli JS; Koepp J; Hama A; Sanaur S; Rae GA; Rambo CR Biomed Microdevices; 2021 Jan; 23(1):2. PubMed ID: 33386434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]