BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35162030)

  • 1. Fracture Detection in Wrist X-ray Images Using Deep Learning-Based Object Detection Models.
    Hardalaç F; Uysal F; Peker O; Çiçeklidağ M; Tolunay T; Tokgöz N; Kutbay U; Demirciler B; Mert F
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting pediatric wrist fractures using deep-learning-based object detection.
    Zech JR; Carotenuto G; Igbinoba Z; Tran CV; Insley E; Baccarella A; Wong TT
    Pediatr Radiol; 2023 May; 53(6):1125-1134. PubMed ID: 36650360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence to diagnosis distal radius fracture using biplane plain X-rays.
    Oka K; Shiode R; Yoshii Y; Tanaka H; Iwahashi T; Murase T
    J Orthop Surg Res; 2021 Nov; 16(1):694. PubMed ID: 34823550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning for Midfacial Fracture Detection in CT Images.
    Warin K; Vicharueang S; Jantana P; Limprasert W; Thanathornwong B; Suebnukarn S
    Stud Health Technol Inform; 2024 Jan; 310():1497-1498. PubMed ID: 38269714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm.
    Ju RY; Cai W
    Sci Rep; 2023 Nov; 13(1):20077. PubMed ID: 37973984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence diagnostic model for multi-site fracture X-ray images of extremities based on deep convolutional neural networks.
    Xie Y; Li X; Chen F; Wen R; Jing Y; Liu C; Wang J
    Quant Imaging Med Surg; 2024 Feb; 14(2):1930-1943. PubMed ID: 38415122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Minority Class Balanced Approach Using the DCNN-LSTM Method to Detect Human Wrist Fracture.
    Rashid T; Zia MS; Najam-Ur-Rehman ; Meraj T; Rauf HT; Kadry S
    Life (Basel); 2023 Jan; 13(1):. PubMed ID: 36676082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Distal Radius Fractures Using a Segmentation-Based Deep Learning Model.
    Anttila TT; Karjalainen TV; Mäkelä TO; Waris EM; Lindfors NC; Leminen MM; Ryhänen JO
    J Digit Imaging; 2023 Apr; 36(2):679-687. PubMed ID: 36542269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of deep learning methods for hand fracture detection from plain hand radiographs.
    Üreten K; Sevinç HF; İğdeli U; Onay A; Maraş Y
    Ulus Travma Acil Cerrahi Derg; 2022 Jan; 28(2):196-201. PubMed ID: 35099027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical evaluation of deep neural networks for wrist fracture detection.
    Raisuddin AM; Vaattovaara E; Nevalainen M; Nikki M; Järvenpää E; Makkonen K; Pinola P; Palsio T; Niemensivu A; Tervonen O; Tiulpin A
    Sci Rep; 2021 Mar; 11(1):6006. PubMed ID: 33727668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence research within reach: an object detection model to identify rickets on pediatric wrist radiographs.
    Meda KC; Milla SS; Rostad BS
    Pediatr Radiol; 2021 May; 51(5):782-791. PubMed ID: 33399980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D-3D reconstruction of distal forearm bone from actual X-ray images of the wrist using convolutional neural networks.
    Shiode R; Kabashima M; Hiasa Y; Oka K; Murase T; Sato Y; Otake Y
    Sci Rep; 2021 Jul; 11(1):15249. PubMed ID: 34315946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography.
    Ho CS; Chen YP; Fan TY; Kuo CF; Yen TY; Liu YC; Pei YC
    Arch Osteoporos; 2021 Oct; 16(1):153. PubMed ID: 34626252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach.
    Tanzi L; Vezzetti E; Moreno R; Aprato A; Audisio A; Massè A
    Eur J Radiol; 2020 Dec; 133():109373. PubMed ID: 33126175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Contribution of quantitative radio-scintigraphy to diagnosis of wrist injuries undetected on plain films: a prospective study of 154 cases].
    Lepage D; Obert L; Garbuio P; Tropet Y; Paratte B; Runge M; Verdenet J; Cardot JC
    Rev Chir Orthop Reparatrice Appar Mot; 2004 Oct; 90(6):542-9. PubMed ID: 15672921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic detection and classification of peri-prosthetic femur fracture.
    Alzaid A; Wignall A; Dogramadzi S; Pandit H; Xie SQ
    Int J Comput Assist Radiol Surg; 2022 Apr; 17(4):649-660. PubMed ID: 35157227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UBNet: Deep learning-based approach for automatic X-ray image detection of pneumonia and COVID-19 patients.
    Widodo CS; Naba A; Mahasin MM; Yueniwati Y; Putranto TA; Patra PI
    J Xray Sci Technol; 2022; 30(1):57-71. PubMed ID: 34864714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and optimization of AI algorithms for wrist fracture detection in children using a freely available dataset.
    Till T; Tschauner S; Singer G; Lichtenegger K; Till H
    Front Pediatr; 2023; 11():1291804. PubMed ID: 38188914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep neural network improves fracture detection by clinicians.
    Lindsey R; Daluiski A; Chopra S; Lachapelle A; Mozer M; Sicular S; Hanel D; Gardner M; Gupta A; Hotchkiss R; Potter H
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11591-11596. PubMed ID: 30348771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional Neural Network to Classify Infrared Thermal Images of Fractured Wrists in Pediatrics.
    Shobayo O; Saatchi R; Ramlakhan S
    Healthcare (Basel); 2024 May; 12(10):. PubMed ID: 38786405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.