These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35162034)

  • 1. Evaluation of Static Autonomous GNSS Positioning Accuracy Using Single-, Dual-, and Tri-Frequency Smartphones in Forest Canopy Environments.
    Purfürst T
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation Quality Assessment and Performance of GNSS Standalone Positioning with Code Pseudoranges of Dual-Frequency Android Smartphones.
    Robustelli U; Paziewski J; Pugliano G
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone.
    Wu Q; Sun M; Zhou C; Zhang P
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inherent Limitations of Smartphone GNSS Positioning and Effective Methods to Increase the Accuracy Utilizing Dual-Frequency Measurements.
    Yun J; Lim C; Park B
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time Precise Point Positioning with a Xiaomi MI 8 Android Smartphone.
    Chen B; Gao C; Liu Y; Sun P
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31242704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditioning and PPP processing of smartphone GNSS measurements in realistic environments.
    Shinghal G; Bisnath S
    Satell Navig; 2021; 2(1):10. PubMed ID: 34790903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Baseline RTK Positioning Using Dual-Frequency GNSS Receivers Inside Smartphones.
    Dabove P; Di Pietra V
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31590234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative Positioning in Remote Areas Using a GNSS Dual Frequency Smartphone.
    Magalhães A; Bastos L; Maia D; Gonçalves JA
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on Multi-GNSS Precise Point Positioning Performance with Adverse Effects of Satellite Signals on Android Smartphone.
    Zhu H; Xia L; Wu D; Xia J; Li Q
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33187376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of nearby trees on the positional accuracy of GNSS receivers in a forest environment.
    Lee T; Bettinger P; Merry K; Cieszewski C
    PLoS One; 2023; 18(3):e0283090. PubMed ID: 36920964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise Point Positioning Using World's First Dual-Frequency GPS/GALILEO Smartphone.
    Elmezayen A; El-Rabbany A
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static Positioning under Tree Canopy Using Low-Cost GNSS Receivers and Adapted RTKLIB Software.
    Tomaštík J; Everett T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionosphere-Constrained Single-Frequency PPP with an Android Smartphone and Assessment of GNSS Observations.
    Wang G; Bo Y; Yu Q; Li M; Yin Z; Chen Y
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33092084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instantaneous Best Integer Equivariant Position Estimation Using Google Pixel 4 Smartphones for Single- and Dual-Frequency, Multi-GNSS Short-Baseline RTK.
    Yong CZ; Harima K; Rubinov E; McClusky S; Odolinski R
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous High-Precision Positioning in Smartphones by FGO-Based Fusion of GNSS-PPK and PDR.
    Magsi AH; Díez LE; Knauth S
    Micromachines (Basel); 2024 Sep; 15(9):. PubMed ID: 39337801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smartphone GNSS Performance in an Urban Scenario with RAIM Application.
    Angrisano A; Gaglione S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decimeter-Level Accuracy for Smartphone Real-Time Kinematic Positioning Implementing a Robust Kalman Filter Approach and Inertial Navigation System Infusion in Complex Urban Environments.
    Pourmina AH; Alizadeh MM; Schuh H
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GNSS smartphones positioning: advances, challenges, opportunities, and future perspectives.
    Zangenehnejad F; Gao Y
    Satell Navig; 2021; 2(1):24. PubMed ID: 34870240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New DGNSS Positioning Infrastructure for Android Smartphones.
    Weng D; Gan X; Chen W; Ji S; Lu Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.