These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35162036)

  • 1. Robotic Manipulation Planning for Automatic Peeling of Glass Substrate Based on Online Learning Model Predictive Path Integral.
    Hou L; Wang H; Zou H; Zhou Y
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vision-Guided MPC for Robotic Path Following Using Learned Memory-Augmented Model.
    Rastegarpanah A; Hathaway J; Stolkin R
    Front Robot AI; 2021; 8():688275. PubMed ID: 34381821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Reinforcement Learning-Based Automatic Exploration for Navigation in Unknown Environment.
    Li H; Zhang Q; Zhao D
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):2064-2076. PubMed ID: 31398138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.
    Yu J; Su Y; Liao Y
    Front Neurorobot; 2020; 14():63. PubMed ID: 33132890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm.
    Wei K; Ren B
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning-Based End-to-End Path Planning for Lunar Rovers with Safety Constraints.
    Yu X; Wang P; Zhang Z
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33504073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning.
    Guo S; Zhang X; Zheng Y; Du AY
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OctoPath: An OcTree-Based Self-Supervised Learning Approach to Local Trajectory Planning for Mobile Robots.
    Trăsnea B; Ginerică C; Zaha M; Măceşanu G; Pozna C; Grigorescu S
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34067237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Experimental Validation of Deep Reinforcement Learning-Based Fast Trajectory Planning and Control for Mobile Robot in Unknown Environment.
    Chai R; Niu H; Carrasco J; Arvin F; Yin H; Lennox B
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5778-5792. PubMed ID: 36215389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Path-Integral-Based Reinforcement Learning Algorithm for Path Following of an Autoassembly Mobile Robot.
    Zhu W; Guo X; Fang Y; Zhang X
    IEEE Trans Neural Netw Learn Syst; 2020 Nov; 31(11):4487-4499. PubMed ID: 31880564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adoption of Machine Learning Algorithm-Based Intelligent Basketball Training Robot in Athlete Injury Prevention.
    Xu T; Tang L
    Front Neurorobot; 2020; 14():620378. PubMed ID: 33519414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning.
    Gao J; Ye W; Guo J; Li Z
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles.
    Ni J; Wu L; Shi P; Yang SX
    Comput Intell Neurosci; 2017; 2017():9269742. PubMed ID: 28255297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Collision-Free Homotopy Path Planning for Planar Robotic Arms.
    Velez-Lopez GC; Vazquez-Leal H; Hernandez-Martinez L; Sarmiento-Reyes A; Diaz-Arango G; Huerta-Chua J; Rico-Aniles HD; Jimenez-Fernandez VM
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient Motion Planning Method with a Lazy Demonstration Graph for Repetitive Pick-and-Place.
    Zuo G; Li M; Yu J; Wu C; Huang G
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Hybrid Path Planning Algorithm and a Bio-Inspired Control for an Omni-Wheel Mobile Robot.
    Kim C; Suh J; Han JH
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided Stochastic Optimization for Motion Planning.
    Magyar B; Tsiogkas N; Brito B; Patel M; Lane D; Wang S
    Front Robot AI; 2019; 6():105. PubMed ID: 33501120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent Spacecraft Visual GNC Architecture With the State-Of-the-Art AI Components for On-Orbit Manipulation.
    Hao Z; Shyam RBA; Rathinam A; Gao Y
    Front Robot AI; 2021; 8():639327. PubMed ID: 34141728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent Optimization Algorithm-Based Path Planning for a Mobile Robot.
    Song Q; Li S; Yang J; Bai Q; Hu J; Zhang X; Zhang A
    Comput Intell Neurosci; 2021; 2021():8025730. PubMed ID: 34630554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.