BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3516213)

  • 21. MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex.
    Yousafzai FK; Eady RR
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):511-5. PubMed ID: 10215587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogenase reactivity: cyanide as substrate and inhibitor.
    Li J; Burgess BK; Corbin JL
    Biochemistry; 1982 Aug; 21(18):4393-402. PubMed ID: 6982070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogenases from Klebsiella pneumoniae and Clostridium pasteurianum. Kinetic investigations of cross-reactions as a probe of the enzyme mechanism.
    Smith BE; Thorneley RN; Eady RR; Mortenson LE
    Biochem J; 1976 Aug; 157(2):439-47. PubMed ID: 134700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diazene (HN=NH) is a substrate for nitrogenase: insights into the pathway of N2 reduction.
    Barney BM; McClead J; Lukoyanov D; Laryukhin M; Yang TC; Dean DR; Hoffman BM; Seefeldt LC
    Biochemistry; 2007 Jun; 46(23):6784-94. PubMed ID: 17508723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogenase of Klebsiella pneumoniae. Inhibition of acetylene reduction by magnesium ion explained by the formation of an inactive dimagnesium-adenosine triphophate complex.
    Thorneley RN; Willison KR
    Biochem J; 1974 Apr; 139(1):211-4. PubMed ID: 4618775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mechanism of Klebsiella pneumoniae nitrogenase action. Simulation of the dependences of H2-evolution rate on component-protein concentration and ratio and sodium dithionite concentration.
    Thorneley RN; Lowe DJ
    Biochem J; 1984 Dec; 224(3):903-9. PubMed ID: 6395864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen burst associated with nitrogenase-catalyzed reactions.
    Liang J; Burris RH
    Proc Natl Acad Sci U S A; 1988 Dec; 85(24):9446-50. PubMed ID: 3200830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii.
    Lowe DJ; Fisher K; Thorneley RN; Vaughn SA; Burgess BK
    Biochemistry; 1989 Oct; 28(21):8460-6. PubMed ID: 2605195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of cyclic and acyclic diazene derivates by Azotobacter vinelandii nitrogenase: diazirine and trans-dimethyldiazene.
    McKenna CE; Simeonov AM; Eran H; Bravo-Leerabhandh M
    Biochemistry; 1996 Apr; 35(14):4502-14. PubMed ID: 8605200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyanamide: a new substrate for nitrogenase.
    Miller RW; Eady RR
    Biochim Biophys Acta; 1988 Feb; 952(3):290-6. PubMed ID: 3422164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogenase of Klebsiella pneumoniae. Reversibility of the reductant-independent MgATP-cleavage reaction is shown by MgADP-catalysed phosphate/water oxygen exchange.
    Thorneley RN; Ashby GA; Julius C; Hunter JL; Webb MR
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):735-41. PubMed ID: 1872810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Insights into the N2O formation mechanism over Pt-BaO/Al2O3 model catalysts using H2 as a reductant.
    Zhu J; Wang J; Wang J; Lv L; Wang X; Shen M
    Environ Sci Technol; 2015 Jan; 49(1):504-12. PubMed ID: 25495837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrogenase reactivity: methyl isocyanide as substrate and inhibitor.
    Rubinson JF; Corbin JL; Burgess BK
    Biochemistry; 1983 Dec; 22(26):6260-8. PubMed ID: 6607071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogenase of Klebsiella pneumoniae: a pre-steady state burst of ATP hydrolysis is coupled to electron transfer between the component proteins.
    Eady RR; Lowe DJ; Thorneley RN
    FEBS Lett; 1978 Nov; 95(2):211-3. PubMed ID: 363454
    [No Abstract]   [Full Text] [Related]  

  • 35. Electron transport to nitrogenase in Klebsiella pneumoniae.
    Nieva-Gómez D; Roberts GP; Klevickis S; Brill WJ
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2555-8. PubMed ID: 6994100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbonyl sulfide and carbon dioxide as new substrates, and carbon disulfide as a new inhibitor, of nitrogenase.
    Seefeldt LC; Rasche ME; Ensign SA
    Biochemistry; 1995 Apr; 34(16):5382-9. PubMed ID: 7727396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reduction of nitrous oxide to dinitrogen by Escherichia coli.
    Kaldorf M; Linne von Berg KH; Meier U; Servos U; Bothe H
    Arch Microbiol; 1993; 160(6):432-9. PubMed ID: 8297209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of Nitrogenase H
    Khadka N; Milton RD; Shaw S; Lukoyanov D; Dean DR; Minteer SD; Raugei S; Hoffman BM; Seefeldt LC
    J Am Chem Soc; 2017 Sep; 139(38):13518-13524. PubMed ID: 28851217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogenase of Klebsiella pneumoniae: kinetics of formation of the transition-state complex and evidence for an altered conformation of MoFe protein lacking a FeMoco centre.
    Yousafzai FK; Eady RR
    Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):637-40. PubMed ID: 9307010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogenase of Klebsiella pneumoniae. Kinetics of the dissociation of oxidized iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction.
    Thorneley RN; Lowe DJ
    Biochem J; 1983 Nov; 215(2):393-403. PubMed ID: 6316927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.