BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3516213)

  • 41. Mechanism of nitrogenase switch-off by oxygen.
    Goldberg I; Nadler V; Hochman A
    J Bacteriol; 1987 Feb; 169(2):874-9. PubMed ID: 3542974
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Model for acetylene reduction by nitrogenase derived from density functional theory.
    Kästner J; Blöchl PE
    Inorg Chem; 2005 Jun; 44(13):4568-75. PubMed ID: 15962963
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Azotobacter vinelandii vanadium nitrogenase: formaldehyde is a product of catalyzed HCN reduction, and excess ammonia arises directly from catalyzed azide reduction.
    Fisher K; Dilworth MJ; Newton WE
    Biochemistry; 2006 Apr; 45(13):4190-8. PubMed ID: 16566593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Klebsiella pneumoniae nitrogenase: pre-steady-state absorbance changes show that redox changes occur in the MoFe protein that depend on substrate and component protein ratio; a role for P-centres in reducing dinitrogen?
    Lowe DJ; Fisher K; Thorneley RN
    Biochem J; 1993 May; 292 ( Pt 1)(Pt 1):93-8. PubMed ID: 8389132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Klebsiella pneumoniae nitrogenase: formation and stability of putative beryllium fluoride-ADP transition state complexes.
    Clarke TA; Yousafzai FK; Eady RR
    Biochemistry; 1999 Aug; 38(31):9906-13. PubMed ID: 10433697
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitrous oxide (N2O) emissions from biotrickling filters used for ammonia removal at livestock facilities.
    Melse RW; Mosquera J
    Water Sci Technol; 2014; 69(5):994-1003. PubMed ID: 24622548
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitrogenases of Klebsiella pneumoniae and Azotobacter chroococum. Complex formation between the component proteins.
    Thorneley RN; Eady RR; Yates MG
    Biochim Biophys Acta; 1975 Oct; 403(2):269-84. PubMed ID: 1101961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens.
    Sun J; Bai M; Shen J; Griffith DWT; Denmead OT; Hill J; Lam SK; Mosier AR; Chen D
    Sci Total Environ; 2016 Sep; 565():148-154. PubMed ID: 27161136
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reductive Elimination of H2 Activates Nitrogenase to Reduce the N≡N Triple Bond: Characterization of the E4(4H) Janus Intermediate in Wild-Type Enzyme.
    Lukoyanov D; Khadka N; Yang ZY; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2016 Aug; 138(33):10674-83. PubMed ID: 27529724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correction for creatine interference with the direct indophenol measurement of NH3 in steady-state nitrogenase assays.
    Dilworth MJ; Eldridge ME; Eady RR
    Anal Biochem; 1992 Nov; 207(1):6-10. PubMed ID: 1336937
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Theoretical study on the gas-phase reaction mechanism of ammonia with nitrous oxide.
    Li Y; Jiang R; Xu S; Gong X; Pan F; Pang A
    J Mol Model; 2020 Feb; 26(3):48. PubMed ID: 32020355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N₂ for H₂.
    Lukoyanov D; Yang ZY; Khadka N; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2015 Mar; 137(10):3610-5. PubMed ID: 25741750
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of the iron-molybdenum cofactor of nitrogenase is inhibited by a low-molecular-weight metabolite of Klebsiella pneumoniae.
    Downs DM; Ludden PW; Shah VK
    J Bacteriol; 1990 Oct; 172(10):6084-9. PubMed ID: 2211526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and characterization of nitrogenase from Klebsiella pneumoniae.
    Shah VK
    Methods Enzymol; 1986; 118():511-9. PubMed ID: 3512961
    [No Abstract]   [Full Text] [Related]  

  • 55. Nitrogenase. VII. Effect of component ratio, ATP and H2 on the distribution of electrons to alternative substrates.
    Davis LC; Shah VK; Brill WJ
    Biochim Biophys Acta; 1975 Sep; 403(1):67-78. PubMed ID: 1174550
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxygen inhibition of nitrogenase activity in Klebsiella pneumoniae.
    Kavanagh EP; Hill S
    J Gen Microbiol; 1993 Jun; 139 Pt 6():1307-14. PubMed ID: 8360623
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of low oxygen concentration on derepression of nitrogenase in Klebsiella pneumoniae.
    Bergersen FJ; Kennedy C; Hill S
    J Gen Microbiol; 1982 May; 128(5):909-15. PubMed ID: 7050298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Emission of NH
    Shan N; Han SH; Liu JP; Chen Q; Yuan YL; Wang LG; Li H
    Huan Jing Ke Xue; 2018 Oct; 39(10):4705-4716. PubMed ID: 30229619
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Citrate substitutes for homocitrate in nitrogenase of a nifV mutant of Klebsiella pneumoniae.
    Liang J; Madden M; Shah VK; Burris RH
    Biochemistry; 1990 Sep; 29(37):8577-81. PubMed ID: 2271541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The participation of cytochromes in the reduction of N20 to N2 by a denitryfying bacterium.
    Matsubara T
    J Biochem; 1975 Mar; 77(3):627-32. PubMed ID: 168184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.