These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 35162308)
1. Estimation of Fine-Grained Foot Strike Patterns with Wearable Smartwatch Devices. Joo H; Kim H; Ryu JK; Ryu S; Lee KM; Kim SC Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162308 [TBL] [Abstract][Full Text] [Related]
2. Recognition of Fine-Grained Walking Patterns Using a Smartwatch with Deep Attentive Neural Networks. Kim H; Kim HJ; Park J; Ryu JK; Kim SC Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640712 [TBL] [Abstract][Full Text] [Related]
3. Fast Wearable Sensor-Based Foot-Ground Contact Phase Classification Using a Convolutional Neural Network with Sliding-Window Label Overlapping. Jeon H; Kim SL; Kim S; Lee D Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32899247 [TBL] [Abstract][Full Text] [Related]
4. Fine-Grained Motion Recognition in At-Home Fitness Monitoring with Smartwatch: A Comparative Analysis of Explainable Deep Neural Networks. Yun SH; Kim HJ; Ryu JK; Kim SC Healthcare (Basel); 2023 Mar; 11(7):. PubMed ID: 37046868 [TBL] [Abstract][Full Text] [Related]
5. Classification of Aggressive Movements Using Smartwatches. Tchuente F; Baddour N; Lemaire ED Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182258 [TBL] [Abstract][Full Text] [Related]
7. Estimation of Various Walking Intensities Based on Wearable Plantar Pressure Sensors Using Artificial Neural Networks. Chen HC; Sunardi ; Liau BY; Lin CY; Akbari VBH; Lung CW; Jan YK Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640838 [TBL] [Abstract][Full Text] [Related]
8. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network. Jin H; Kang I; Choi G; Molinaro DD; Young AJ Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306 [TBL] [Abstract][Full Text] [Related]
9. Smartwatch User Interface Implementation Using CNN-Based Gesture Pattern Recognition. Kwon MC; Park G; Choi S Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30205509 [TBL] [Abstract][Full Text] [Related]
10. Usability and Accuracy of a Smartwatch for the Assessment of Physical Activity in the Elderly Population: Observational Study. Martinato M; Lorenzoni G; Zanchi T; Bergamin A; Buratin A; Azzolina D; Gregori D JMIR Mhealth Uhealth; 2021 May; 9(5):e20966. PubMed ID: 33949953 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks Nagashima M; Cho SG; Ding M; Garcia Ricardez GA; Takamatsu J; Ogasawara T Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3629-3632. PubMed ID: 31946662 [TBL] [Abstract][Full Text] [Related]
12. Deep Neural Network-Based Gait Classification Using Wearable Inertial Sensor Data. Jung D; Nguyen MD; Han J; Park M; Lee K; Yoo S; Kim J; Mun KR Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3624-3628. PubMed ID: 31946661 [TBL] [Abstract][Full Text] [Related]
13. Design of a Novel Wearable System for Foot Clearance Estimation. Jacob S; Fernie G; Roshan Fekr A Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883901 [TBL] [Abstract][Full Text] [Related]
14. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking. Hu B; Dixon PC; Jacobs JV; Dennerlein JT; Schiffman JM J Biomech; 2018 Apr; 71():37-42. PubMed ID: 29452755 [TBL] [Abstract][Full Text] [Related]
15. Personal Identification Using Gait Spectrograms and Deep Convolutional Neural Networks. Jung D; Nguyen MD; Arshad MZ; Kim J; Mun KR Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6899-6904. PubMed ID: 34892691 [TBL] [Abstract][Full Text] [Related]
16. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach. Hernandez V; Dadkhah D; Babakeshizadeh V; Kulić D Gait Posture; 2021 Jan; 83():185-193. PubMed ID: 33161275 [TBL] [Abstract][Full Text] [Related]
17. A Probability Distribution Model-Based Approach for Foot Placement Prediction in the Early Swing Phase With a Wearable IMU Sensor. Chen X; Zhang K; Liu H; Leng Y; Fu C IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2595-2604. PubMed ID: 34874865 [TBL] [Abstract][Full Text] [Related]
18. Classification of Breathing Signals According to Human Motions by Combining 1D Convolutional Neural Network and Embroidered Textile Sensor. Kim J; Kim J Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420902 [TBL] [Abstract][Full Text] [Related]
19. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance. Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287 [TBL] [Abstract][Full Text] [Related]
20. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study. Chae SH; Kim Y; Lee KS; Park HS JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]