BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35162417)

  • 1. Distribution Characteristics and Risk Assessment of Agricultural Land Use Non-Point Source Pollution in Typical Biofuel Ethanol Planting Areas.
    Cui G; Liu Y; Wang P; Bai X; Wang H; Xu Y; Yang M; Dong L
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Response of Watershed Water Quality to Agriculture Land-Use Changes in a Typical Fuel Ethanol Raw Material Planting Area-A Case Study on Guangxi Province, China.
    Cui G; Bai X; Wang P; Wang H; Wang S; Dong L
    Int J Environ Res Public Health; 2022 May; 19(11):. PubMed ID: 35682082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Output Characteristics of Nitrogen and Phosphorus from Non-Point Source Pollution of Typical Land Use in A Micro-Watershed in Hilly Red Soil Region].
    Fang ZD; Su JJ; Zhao HT; Hu L; Li XY
    Huan Jing Ke Xue; 2021 Nov; 42(11):5394-5404. PubMed ID: 34708978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.
    Wu L; Gao JE; Ma XY; Li D
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10647-60. PubMed ID: 25752629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial interaction effects on the relationship between agricultural economic and planting non-point source pollution in China.
    Li X; Shang J
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):51607-51623. PubMed ID: 36810818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of potential agricultural non-point source pollution for Baiyangdian Basin, China, under different environment protection policies.
    Tao Y; Liu J; Guan X; Chen H; Ren X; Wang S; Ji M
    PLoS One; 2020; 15(9):e0239006. PubMed ID: 32960903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Estimation of Agricultural Non-point Source TN and TP Export Coefficients Based on Soil Loss].
    Wang YX; Huang C; Liu GH; Zhao ZH; Li H; Liu QS
    Huan Jing Ke Xue; 2022 Aug; 43(8):4032-4041. PubMed ID: 35971701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A source-sink landscape approach to mitigation of agricultural non-point source pollution: Validation and application.
    Yu W; Zhang J; Liu L; Li Y; Li X
    Environ Pollut; 2022 Dec; 314():120287. PubMed ID: 36179998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Case study on nitrogen and phosphorus emissions from paddy field in Taihu region.
    Guo HY; Zhu JG; Wang XR; Wu ZH; Zhang Z
    Environ Geochem Health; 2004; 26(2-3):209-19. PubMed ID: 15499776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].
    Deng OP; Sun SY; Lü J
    Huan Jing Ke Xue; 2013 Apr; 34(4):1284-90. PubMed ID: 23798104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.
    Chen D; Lu J; Wang H; Shen Y; Kimberley MO
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):312-20. PubMed ID: 19795144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanized and Optimized Configuration Pattern of Crop-Mulberry Systems for Controlling Agricultural, Non-Point Source Pollution on Sloping Farmland in the Three Gorges Reservoir Area, China.
    Zhong S; Han Z; Li J; Xie D; Yang Q; Ni J
    Int J Environ Res Public Health; 2020 May; 17(10):. PubMed ID: 32443821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Temporal and spatial variations of total nitrogen and total phosphorus in the typical reaches of Qinhuai River].
    Li YF; Xia YQ; Li XB; Xiong ZQ; Yan XY
    Huan Jing Ke Xue; 2013 Jan; 34(1):91-7. PubMed ID: 23487923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical source areas' identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model.
    Chang D; Lai Z; Li S; Li D; Zhou J
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47162-47181. PubMed ID: 33886049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Influencing factors of non-point source pollution of watershed based on boosted regression tree algorithm.].
    Yin C; Liu M; Sun FY; Li CL; Xiang WN
    Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):911-919. PubMed ID: 29726198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China.
    Zhang BL; Cui BH; Zhang SM; Wu QY; Yao L
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):19101-19113. PubMed ID: 29725920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region.
    Shen Z; Qiu J; Hong Q; Chen L
    Sci Total Environ; 2014 Sep; 493():138-46. PubMed ID: 24946028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing Nitrogen and Phosphorus Losses from Different Crop Types in the Water Source Area of the Danjiang River, China.
    Guo M; Zhang T; Li J; Li Z; Xu G; Yang R
    Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31533215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial variability of soil nutrients in seasonal rivers: A case study from the Guo River Basin, China.
    Li C; Wang X; Qin M
    PLoS One; 2021; 16(3):e0248655. PubMed ID: 33725027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment and analysis of agricultural non-point source pollution loads in China: 1978-2017.
    Zou L; Liu Y; Wang Y; Hu X
    J Environ Manage; 2020 Jun; 263():110400. PubMed ID: 32174536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.