These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35162506)

  • 1. Dynamics of Microbial Communities during the Removal of Copper and Zinc in a Sulfate-Reducing Bioreactor with a Limestone Pre-Column System.
    Zambrano-Romero A; Ramirez-Villacis DX; Trueba G; Sierra-Alvarez R; Leon-Reyes A; Cardenas P; Ochoa-Herrera V
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of acid rock drainage using a sulphate-reducing bioreactor with a limestone precolumn.
    Méndez G; Trueba G; Sierra-Alvarez R; Ochoa-Herrera V
    Environ Technol; 2023 Jan; 44(2):185-196. PubMed ID: 34380378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate and metal removal from acid mine drainage using sugarcane vinasse as electron donor: Performance and microbial community of the down-flow structured-bed bioreactor.
    Nogueira EW; Gouvêa de Godoi LA; Marques Yabuki LN; Brucha G; Zamariolli Damianovic MHR
    Bioresour Technol; 2021 Jun; 330():124968. PubMed ID: 33744733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.
    Zhang M; Wang H; Han X
    Chemosphere; 2016 Jul; 154():215-223. PubMed ID: 27058913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage: Performance dynamics and microbial community comparison.
    Chai G; Wang D; Zhang Y; Wang H; Li J; Jing X; Meng H; Wang Z; Guo Y; Jiang C; Li H; Lin Y
    J Environ Manage; 2023 Mar; 330():117148. PubMed ID: 36584458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population dynamics of a single-stage sulfidogenic bioreactor treating synthetic zinc-containing waste streams.
    Dar SA; Bijmans MF; Dinkla IJ; Geurkink B; Lens PN; Dopson M
    Microb Ecol; 2009 Oct; 58(3):529-37. PubMed ID: 19322604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of sulfate-reducing bacteria and supporting microbial community to persulfate exposure in a continuous flow system.
    Bartlett CK; Slawson RM; Thomson NR
    Environ Sci Process Impacts; 2019 Jul; 21(7):1193-1203. PubMed ID: 31204424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.
    Ayala-Parra P; Sierra-Alvarez R; Field JA
    J Hazard Mater; 2016 May; 308():97-105. PubMed ID: 26808248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions.
    Nielsen G; Hatam I; Abuan KA; Janin A; Coudert L; Blais JF; Mercier G; Baldwin SA
    Water Res; 2018 Sep; 140():268-279. PubMed ID: 29723816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of changes in the microbial community structure in the sediments of a constructed wetland over the years.
    Elhaj Baddar Z; Xu X
    Arch Microbiol; 2022 Aug; 204(9):552. PubMed ID: 35953591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance evaluation and microbial community analysis of the function and fate of ammonia in a sulfate-reducing EGSB reactor.
    Wang D; Liu B; Ding X; Sun X; Liang Z; Sheng S; Du L
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7729-7739. PubMed ID: 28929287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: Evaluation on reactor performance and dynamics of microbial community.
    Huang H; Biswal BK; Chen GH; Wu D
    Bioresour Technol; 2020 Feb; 297():122396. PubMed ID: 31748132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor.
    Jong T; Parry DL
    Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio.
    Dar SA; Kleerebezem R; Stams AJ; Kuenen JG; Muyzer G
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):1045-55. PubMed ID: 18305937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organoheterotrophic Bacterial Abundance Associates with Zinc Removal in Lignocellulose-Based Sulfate-Reducing Systems.
    Drennan DM; Almstrand R; Lee I; Landkamer L; Figueroa L; Sharp JO
    Environ Sci Technol; 2016 Jan; 50(1):378-87. PubMed ID: 26605699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal start-up conditions for the efficient treatment of acid mine drainage using sulfate-reducing bioreactors based on physicochemical and microbiome analyses.
    Sato Y; Hamai T; Hori T; Aoyagi T; Inaba T; Hayashi K; Kobayashi M; Sakata T; Habe H
    J Hazard Mater; 2022 Feb; 423(Pt B):127089. PubMed ID: 34560478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria.
    Utgikar VP; Tabak HH; Haines JR; Govind R
    Biotechnol Bioeng; 2003 May; 82(3):306-12. PubMed ID: 12599257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Application of a Low pH Upflow Biofilm Sulfidogenic Bioreactor for Recovering Transition Metals From Synthetic Waste Water at a Brazilian Copper Mine.
    Santos AL; Johnson DB
    Front Microbiol; 2018; 9():2051. PubMed ID: 30214439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater.
    Kaksonen AH; Plumb JJ; Franzmann PD; Puhakka JA
    FEMS Microbiol Ecol; 2004 Mar; 47(3):279-89. PubMed ID: 19712316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.