These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 35163169)
1. Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. Timoshnikov VA; Selyutina OY; Polyakov NE; Didichenko V; Kontoghiorghes GJ Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163169 [TBL] [Abstract][Full Text] [Related]
2. Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): a combined experimental and theoretical study. Popović-Bijelić A; Kowol CR; Lind ME; Luo J; Himo F; Enyedy EA; Arion VB; Gräslund A J Inorg Biochem; 2011 Nov; 105(11):1422-31. PubMed ID: 21955844 [TBL] [Abstract][Full Text] [Related]
3. Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone. Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486511 [TBL] [Abstract][Full Text] [Related]
4. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Chaston TB; Lovejoy DB; Watts RN; Richardson DR Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494 [TBL] [Abstract][Full Text] [Related]
5. Antioxidant Activity of Deferasirox and Its Metal Complexes in Model Systems of Oxidative Damage: Comparison with Deferiprone. Timoshnikov VA; Kichigina LA; Selyutina OY; Polyakov NE; Kontoghiorghes GJ Molecules; 2021 Aug; 26(16):. PubMed ID: 34443652 [TBL] [Abstract][Full Text] [Related]
6. Novel thiosemicarbazones of the ApT and DpT series and their copper complexes: identification of pronounced redox activity and characterization of their antitumor activity. Jansson PJ; Sharpe PC; Bernhardt PV; Richardson DR J Med Chem; 2010 Aug; 53(15):5759-69. PubMed ID: 20597487 [TBL] [Abstract][Full Text] [Related]
7. Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. Fernandez MT; Mira ML; Florêncio MH; Jennings KR J Inorg Biochem; 2002 Nov; 92(2):105-11. PubMed ID: 12459155 [TBL] [Abstract][Full Text] [Related]
8. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity. Richardson DR; Sharpe PC; Lovejoy DB; Senaratne D; Kalinowski DS; Islam M; Bernhardt PV J Med Chem; 2006 Nov; 49(22):6510-21. PubMed ID: 17064069 [TBL] [Abstract][Full Text] [Related]
9. Redox activation of Fe(III)-thiosemicarbazones and Fe(III)-bleomycin by thioredoxin reductase: specificity of enzymatic redox centers and analysis of reactive species formation by ESR spin trapping. Myers JM; Cheng Q; Antholine WE; Kalyanaraman B; Filipovska A; Arnér ES; Myers CR Free Radic Biol Med; 2013 Jul; 60():183-94. PubMed ID: 23485585 [TBL] [Abstract][Full Text] [Related]
10. 2-Acetylpyridine thiosemicarbazones are potent iron chelators and antiproliferative agents: redox activity, iron complexation and characterization of their antitumor activity. Richardson DR; Kalinowski DS; Richardson V; Sharpe PC; Lovejoy DB; Islam M; Bernhardt PV J Med Chem; 2009 Mar; 52(5):1459-70. PubMed ID: 19216562 [TBL] [Abstract][Full Text] [Related]
11. Advances on Chelation and Chelator Metal Complexes in Medicine. Kontoghiorghes GJ Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32260293 [TBL] [Abstract][Full Text] [Related]
12. Halogenated 2'-benzoylpyridine thiosemicarbazone (XBpT) chelators with potent and selective anti-neoplastic activity: relationship to intracellular redox activity. Stefani C; Punnia-Moorthy G; Lovejoy DB; Jansson PJ; Kalinowski DS; Sharpe PC; Bernhardt PV; Richardson DR J Med Chem; 2011 Oct; 54(19):6936-48. PubMed ID: 21846118 [TBL] [Abstract][Full Text] [Related]
13. Activity and electrochemical properties: iron complexes of the anticancer drug triapine and its analogs. Plamthottam S; Sun D; Van Valkenburgh J; Valenzuela J; Ruehle B; Steele D; Poddar S; Marshalik M; Hernandez S; Radu CG; Zink JI J Biol Inorg Chem; 2019 Aug; 24(5):621-632. PubMed ID: 31250199 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, antioxidant activities of the nickel(II), iron(III) and oxovanadium(IV) complexes with N2O2 chelating thiosemicarbazones. Bal-Demirci T; Sahin M; Ozyürek M; Kondakçı E; Ulküseven B Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 126():317-23. PubMed ID: 24656797 [TBL] [Abstract][Full Text] [Related]
15. Metal complexes of biologically active ligands as potential antioxidants. Kostova I; Balkansky S Curr Med Chem; 2013; 20(36):4508-39. PubMed ID: 23834169 [TBL] [Abstract][Full Text] [Related]
16. Kinetico-mechanistic studies on methemoglobin generation by biologically active thiosemicarbazone iron(III) complexes. Basha MT; Bordini J; Richardson DR; Martinez M; Bernhardt PV J Inorg Biochem; 2016 Sep; 162():326-333. PubMed ID: 27079328 [TBL] [Abstract][Full Text] [Related]
17. Metals, toxicity and oxidative stress. Valko M; Morris H; Cronin MT Curr Med Chem; 2005; 12(10):1161-208. PubMed ID: 15892631 [TBL] [Abstract][Full Text] [Related]
18. High Copper Complex Stability and Slow Reduction Kinetics as Key Parameters for Improved Activity, Paraptosis Induction, and Impact on Drug-Resistant Cells of Anticancer Thiosemicarbazones. Hager S; Pape VFS; Pósa V; Montsch B; Uhlik L; Szakács G; Tóth S; Jabronka N; Keppler BK; Kowol CR; Enyedy ÉA; Heffeter P Antioxid Redox Signal; 2020 Aug; 33(6):395-414. PubMed ID: 32336116 [No Abstract] [Full Text] [Related]
19. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes. Chitambar CR; Antholine WE Antioxid Redox Signal; 2013 Mar; 18(8):956-72. PubMed ID: 22900955 [TBL] [Abstract][Full Text] [Related]