BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 35163202)

  • 1. Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (
    Wan H; Qian J; Zhang H; Lu H; Li O; Li R; Yu Y; Wen J; Zhao L; Yi B; Fu T; Shen J
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Alkaline Salt Tolerance Genes in
    Xu Y; Tao S; Zhu Y; Zhang Q; Li P; Wang H; Zhang Y; Bakirov A; Cao H; Qin M; Wang K; Shi Y; Liu X; Zheng L; Xu A; Huang Z
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a DEAD-box RNA Helicase BnRH6 Reveals Its Involvement in Salt Stress Response in Rapeseed (
    Zhang X; Song J; Wang L; Yang ZM; Sun D
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome Profile Analysis of Winter Rapeseed (
    Pu Y; Liu L; Wu J; Zhao Y; Bai J; Ma L; Yue J; Jin J; Niu Z; Fang Y; Sun W
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated analysis of transcriptome and metabolome reveals insights for low-temperature germination in hybrid rapeseeds (Brassica napus L.).
    Song J; Chen Y; Jiang G; Zhao J; Wang W; Hong X
    J Plant Physiol; 2023 Dec; 291():154120. PubMed ID: 37935062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Landscapes of the
    Cui JQ; Hua YP; Zhou T; Liu Y; Huang JY; Yue CP
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32408717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Transcriptome Analyses Revealed Conserved and Novel Responses to Cold and Freezing Stress in
    He X; Ni X; Xie P; Liu W; Yao M; Kang Y; Qin L; Hua W
    G3 (Bethesda); 2019 Aug; 9(8):2723-2737. PubMed ID: 31167831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic, proteomic, metabolomic, and functional genomic approaches of Brassica napus L. during salt stress.
    Shu J; Ma X; Ma H; Huang Q; Zhang Y; Guan M; Guan C
    PLoS One; 2022; 17(3):e0262587. PubMed ID: 35271582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.).
    Yong HY; Wang C; Bancroft I; Li F; Wu X; Kitashiba H; Nishio T
    Planta; 2015 Jul; 242(1):313-26. PubMed ID: 25921693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and Transcriptional Responses of Industrial Rapeseed (
    Wang J; Jiao J; Zhou M; Jin Z; Yu Y; Liang M
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining transcriptomics and metabolomics to identify key response genes for aluminum toxicity in the root system of Brassica napus L. seedlings.
    Li C; Shi H; Xu L; Xing M; Wu X; Bai Y; Niu M; Gao J; Zhou Q; Cui C
    Theor Appl Genet; 2023 Jul; 136(8):169. PubMed ID: 37418156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping.
    Wassan GM; Khanzada H; Zhou Q; Mason AS; Keerio AA; Khanzada S; Solangi AM; Faheem M; Fu D; He H
    Mol Genet Genomics; 2021 Mar; 296(2):391-408. PubMed ID: 33464396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in
    Abdelrahman M; Nishiyama R; Tran CD; Kusano M; Nakabayashi R; Okazaki Y; Matsuda F; Chávez Montes RA; Mostofa MG; Li W; Watanabe Y; Fukushima A; Tanaka M; Seki M; Saito K; Herrera-Estrella L; Tran LP
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Identification and Functional Characterization Reveals the Pivotal Roles of
    Zhang T; Zhou T; Zhang Y; Chen J; Song H; Wu P; Yue C; Huang J; Zhang Z; Hua Y
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.).
    Zhou H; Xiao X; Asjad A; Han D; Zheng W; Xiao G; Huang Y; Zhou Q
    BMC Plant Biol; 2022 Mar; 22(1):130. PubMed ID: 35313826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melatonin-Induced Transcriptome Variation of Rapeseed Seedlings under Salt Stress.
    Tan X; Long W; Zeng L; Ding X; Cheng Y; Zhang X; Zou X
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31661818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-Specific Transcriptome and Metabolome Analysis Reveals the Response Mechanism of
    Hong B; Zhou B; Peng Z; Yao M; Wu J; Wu X; Guan C; Guan M
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37046988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L.
    Kim J; Lee WJ; Vu TT; Jeong CY; Hong SW; Lee H
    Plant Cell Rep; 2017 Aug; 36(8):1215-1224. PubMed ID: 28444442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance.
    Dalal M; Tayal D; Chinnusamy V; Bansal KC
    J Biotechnol; 2009 Jan; 139(2):137-45. PubMed ID: 19014980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated methylome and transcriptome analysis unravel the cold tolerance mechanism in winter rapeseed(Brassica napus L.).
    Zheng G; Dong X; Wei J; Liu Z; Aslam A; Cui J; Li H; Wang Y; Tian H; Cao X
    BMC Plant Biol; 2022 Aug; 22(1):414. PubMed ID: 36008781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.